Turbulent inflow conditions for large-eddy simulation based on low-order empirical model
Generation of turbulent inflow boundary conditions is performed by interfacing an experimental database acquired by particle image velocimetry to a computational code. The proposed method ensures that the velocity fields introduced as inlet conditions in the computational code present correct one- a...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2008-07, Vol.20 (7), p.075107-075107-17 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 075107-17 |
---|---|
container_issue | 7 |
container_start_page | 075107 |
container_title | Physics of fluids (1994) |
container_volume | 20 |
creator | Perret, Laurent Delville, Joël Manceau, Rémi Bonnet, Jean-Paul |
description | Generation of turbulent inflow boundary conditions is performed by interfacing an experimental database acquired by particle image velocimetry to a computational code. The proposed method ensures that the velocity fields introduced as inlet conditions in the computational code present correct one- and two-point spatial statistics and a realistic temporal dynamics. This approach is based on the use of the proper orthogonal decomposition (POD) to interpolate and extrapolate the experimental data onto the numerical mesh and to model both the temporal dynamics and the spatial organization of the flow in the inlet section. Realistic representation of the flow is achieved by extracting and modeling independently its coherent and incoherent parts. A low-order dynamical model is derived from the experimental database in order to provide the temporal evolution of the most energetic structures. The incoherent motion is modeled by employing time series of Gaussian random numbers to mimic the temporal evolution of higher order POD modes. Validation of the proposed method is provided by performing a large-eddy simulation of a turbulent plane mixing layer, which is compared to experimental results. |
doi_str_mv | 10.1063/1.2957019 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2957019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00384020v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-45e408d938f4d0ffd2e71a2f4c6afc75a1e670366c9062b567d0e20a31502cdf3</originalsourceid><addsrcrecordid>eNqNkM1KAzEURoMoWKsL3yAbFwpTb5KZzMxGKEWtUHBTwV1I86ORdFKSqdK3d8YpdSW4yiX3-w7cg9AlgQkBzm7JhNZFCaQ-QiMCVZ2VnPPjfi4h45yRU3SW0gcAsJryEXpdbuNq603TYtdYH76wCo12rQtNwjZE7GV8M5nReoeTW2-97Fd4JZPRuBu6RhaiNhGb9cZFp6TH66CNP0cnVvpkLvbvGL083C9n82zx_Pg0my4ylVd5m-WFyaHSNatsrsFaTU1JJLW54tKqspDE8BIY56oGTlcFLzUYCpKRAqjSlo3R9cB9l15solvLuBNBOjGfLkT_111a5UDhk_xmVQwpRWMPBQKi1yeI2OvrsldDdiNTd5SNslEuHQoUiroseM-8G3JJufZHzt_Qg2sxuBad6w5w828A-wbeopIU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Turbulent inflow conditions for large-eddy simulation based on low-order empirical model</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Perret, Laurent ; Delville, Joël ; Manceau, Rémi ; Bonnet, Jean-Paul</creator><creatorcontrib>Perret, Laurent ; Delville, Joël ; Manceau, Rémi ; Bonnet, Jean-Paul</creatorcontrib><description>Generation of turbulent inflow boundary conditions is performed by interfacing an experimental database acquired by particle image velocimetry to a computational code. The proposed method ensures that the velocity fields introduced as inlet conditions in the computational code present correct one- and two-point spatial statistics and a realistic temporal dynamics. This approach is based on the use of the proper orthogonal decomposition (POD) to interpolate and extrapolate the experimental data onto the numerical mesh and to model both the temporal dynamics and the spatial organization of the flow in the inlet section. Realistic representation of the flow is achieved by extracting and modeling independently its coherent and incoherent parts. A low-order dynamical model is derived from the experimental database in order to provide the temporal evolution of the most energetic structures. The incoherent motion is modeled by employing time series of Gaussian random numbers to mimic the temporal evolution of higher order POD modes. Validation of the proposed method is provided by performing a large-eddy simulation of a turbulent plane mixing layer, which is compared to experimental results.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.2957019</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Engineering Sciences ; Exact sciences and technology ; Fluid dynamics ; Fluids mechanics ; Fundamental areas of phenomenology (including applications) ; Mechanics ; Physics ; Turbulence simulation and modeling ; Turbulent flows, convection, and heat transfer</subject><ispartof>Physics of fluids (1994), 2008-07, Vol.20 (7), p.075107-075107-17</ispartof><rights>American Institute of Physics</rights><rights>2008 American Institute of Physics</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-45e408d938f4d0ffd2e71a2f4c6afc75a1e670366c9062b567d0e20a31502cdf3</citedby><cites>FETCH-LOGICAL-c484t-45e408d938f4d0ffd2e71a2f4c6afc75a1e670366c9062b567d0e20a31502cdf3</cites><orcidid>0000-0002-3964-161X ; 0000-0002-3291-5067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20597561$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00384020$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Perret, Laurent</creatorcontrib><creatorcontrib>Delville, Joël</creatorcontrib><creatorcontrib>Manceau, Rémi</creatorcontrib><creatorcontrib>Bonnet, Jean-Paul</creatorcontrib><title>Turbulent inflow conditions for large-eddy simulation based on low-order empirical model</title><title>Physics of fluids (1994)</title><description>Generation of turbulent inflow boundary conditions is performed by interfacing an experimental database acquired by particle image velocimetry to a computational code. The proposed method ensures that the velocity fields introduced as inlet conditions in the computational code present correct one- and two-point spatial statistics and a realistic temporal dynamics. This approach is based on the use of the proper orthogonal decomposition (POD) to interpolate and extrapolate the experimental data onto the numerical mesh and to model both the temporal dynamics and the spatial organization of the flow in the inlet section. Realistic representation of the flow is achieved by extracting and modeling independently its coherent and incoherent parts. A low-order dynamical model is derived from the experimental database in order to provide the temporal evolution of the most energetic structures. The incoherent motion is modeled by employing time series of Gaussian random numbers to mimic the temporal evolution of higher order POD modes. Validation of the proposed method is provided by performing a large-eddy simulation of a turbulent plane mixing layer, which is compared to experimental results.</description><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluids mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KAzEURoMoWKsL3yAbFwpTb5KZzMxGKEWtUHBTwV1I86ORdFKSqdK3d8YpdSW4yiX3-w7cg9AlgQkBzm7JhNZFCaQ-QiMCVZ2VnPPjfi4h45yRU3SW0gcAsJryEXpdbuNq603TYtdYH76wCo12rQtNwjZE7GV8M5nReoeTW2-97Fd4JZPRuBu6RhaiNhGb9cZFp6TH66CNP0cnVvpkLvbvGL083C9n82zx_Pg0my4ylVd5m-WFyaHSNatsrsFaTU1JJLW54tKqspDE8BIY56oGTlcFLzUYCpKRAqjSlo3R9cB9l15solvLuBNBOjGfLkT_111a5UDhk_xmVQwpRWMPBQKi1yeI2OvrsldDdiNTd5SNslEuHQoUiroseM-8G3JJufZHzt_Qg2sxuBad6w5w828A-wbeopIU</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Perret, Laurent</creator><creator>Delville, Joël</creator><creator>Manceau, Rémi</creator><creator>Bonnet, Jean-Paul</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3964-161X</orcidid><orcidid>https://orcid.org/0000-0002-3291-5067</orcidid></search><sort><creationdate>20080701</creationdate><title>Turbulent inflow conditions for large-eddy simulation based on low-order empirical model</title><author>Perret, Laurent ; Delville, Joël ; Manceau, Rémi ; Bonnet, Jean-Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-45e408d938f4d0ffd2e71a2f4c6afc75a1e670366c9062b567d0e20a31502cdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluids mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perret, Laurent</creatorcontrib><creatorcontrib>Delville, Joël</creatorcontrib><creatorcontrib>Manceau, Rémi</creatorcontrib><creatorcontrib>Bonnet, Jean-Paul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perret, Laurent</au><au>Delville, Joël</au><au>Manceau, Rémi</au><au>Bonnet, Jean-Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent inflow conditions for large-eddy simulation based on low-order empirical model</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>20</volume><issue>7</issue><spage>075107</spage><epage>075107-17</epage><pages>075107-075107-17</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Generation of turbulent inflow boundary conditions is performed by interfacing an experimental database acquired by particle image velocimetry to a computational code. The proposed method ensures that the velocity fields introduced as inlet conditions in the computational code present correct one- and two-point spatial statistics and a realistic temporal dynamics. This approach is based on the use of the proper orthogonal decomposition (POD) to interpolate and extrapolate the experimental data onto the numerical mesh and to model both the temporal dynamics and the spatial organization of the flow in the inlet section. Realistic representation of the flow is achieved by extracting and modeling independently its coherent and incoherent parts. A low-order dynamical model is derived from the experimental database in order to provide the temporal evolution of the most energetic structures. The incoherent motion is modeled by employing time series of Gaussian random numbers to mimic the temporal evolution of higher order POD modes. Validation of the proposed method is provided by performing a large-eddy simulation of a turbulent plane mixing layer, which is compared to experimental results.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2957019</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3964-161X</orcidid><orcidid>https://orcid.org/0000-0002-3291-5067</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2008-07, Vol.20 (7), p.075107-075107-17 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_2957019 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Engineering Sciences Exact sciences and technology Fluid dynamics Fluids mechanics Fundamental areas of phenomenology (including applications) Mechanics Physics Turbulence simulation and modeling Turbulent flows, convection, and heat transfer |
title | Turbulent inflow conditions for large-eddy simulation based on low-order empirical model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20inflow%20conditions%20for%20large-eddy%20simulation%20based%20on%20low-order%20empirical%20model&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Perret,%20Laurent&rft.date=2008-07-01&rft.volume=20&rft.issue=7&rft.spage=075107&rft.epage=075107-17&rft.pages=075107-075107-17&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.2957019&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00384020v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |