Turbulent inflow conditions for large-eddy simulation based on low-order empirical model

Generation of turbulent inflow boundary conditions is performed by interfacing an experimental database acquired by particle image velocimetry to a computational code. The proposed method ensures that the velocity fields introduced as inlet conditions in the computational code present correct one- a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2008-07, Vol.20 (7), p.075107-075107-17
Hauptverfasser: Perret, Laurent, Delville, Joël, Manceau, Rémi, Bonnet, Jean-Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 075107-17
container_issue 7
container_start_page 075107
container_title Physics of fluids (1994)
container_volume 20
creator Perret, Laurent
Delville, Joël
Manceau, Rémi
Bonnet, Jean-Paul
description Generation of turbulent inflow boundary conditions is performed by interfacing an experimental database acquired by particle image velocimetry to a computational code. The proposed method ensures that the velocity fields introduced as inlet conditions in the computational code present correct one- and two-point spatial statistics and a realistic temporal dynamics. This approach is based on the use of the proper orthogonal decomposition (POD) to interpolate and extrapolate the experimental data onto the numerical mesh and to model both the temporal dynamics and the spatial organization of the flow in the inlet section. Realistic representation of the flow is achieved by extracting and modeling independently its coherent and incoherent parts. A low-order dynamical model is derived from the experimental database in order to provide the temporal evolution of the most energetic structures. The incoherent motion is modeled by employing time series of Gaussian random numbers to mimic the temporal evolution of higher order POD modes. Validation of the proposed method is provided by performing a large-eddy simulation of a turbulent plane mixing layer, which is compared to experimental results.
doi_str_mv 10.1063/1.2957019
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2957019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00384020v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-45e408d938f4d0ffd2e71a2f4c6afc75a1e670366c9062b567d0e20a31502cdf3</originalsourceid><addsrcrecordid>eNqNkM1KAzEURoMoWKsL3yAbFwpTb5KZzMxGKEWtUHBTwV1I86ORdFKSqdK3d8YpdSW4yiX3-w7cg9AlgQkBzm7JhNZFCaQ-QiMCVZ2VnPPjfi4h45yRU3SW0gcAsJryEXpdbuNq603TYtdYH76wCo12rQtNwjZE7GV8M5nReoeTW2-97Fd4JZPRuBu6RhaiNhGb9cZFp6TH66CNP0cnVvpkLvbvGL083C9n82zx_Pg0my4ylVd5m-WFyaHSNatsrsFaTU1JJLW54tKqspDE8BIY56oGTlcFLzUYCpKRAqjSlo3R9cB9l15solvLuBNBOjGfLkT_111a5UDhk_xmVQwpRWMPBQKi1yeI2OvrsldDdiNTd5SNslEuHQoUiroseM-8G3JJufZHzt_Qg2sxuBad6w5w828A-wbeopIU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Turbulent inflow conditions for large-eddy simulation based on low-order empirical model</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Perret, Laurent ; Delville, Joël ; Manceau, Rémi ; Bonnet, Jean-Paul</creator><creatorcontrib>Perret, Laurent ; Delville, Joël ; Manceau, Rémi ; Bonnet, Jean-Paul</creatorcontrib><description>Generation of turbulent inflow boundary conditions is performed by interfacing an experimental database acquired by particle image velocimetry to a computational code. The proposed method ensures that the velocity fields introduced as inlet conditions in the computational code present correct one- and two-point spatial statistics and a realistic temporal dynamics. This approach is based on the use of the proper orthogonal decomposition (POD) to interpolate and extrapolate the experimental data onto the numerical mesh and to model both the temporal dynamics and the spatial organization of the flow in the inlet section. Realistic representation of the flow is achieved by extracting and modeling independently its coherent and incoherent parts. A low-order dynamical model is derived from the experimental database in order to provide the temporal evolution of the most energetic structures. The incoherent motion is modeled by employing time series of Gaussian random numbers to mimic the temporal evolution of higher order POD modes. Validation of the proposed method is provided by performing a large-eddy simulation of a turbulent plane mixing layer, which is compared to experimental results.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.2957019</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Engineering Sciences ; Exact sciences and technology ; Fluid dynamics ; Fluids mechanics ; Fundamental areas of phenomenology (including applications) ; Mechanics ; Physics ; Turbulence simulation and modeling ; Turbulent flows, convection, and heat transfer</subject><ispartof>Physics of fluids (1994), 2008-07, Vol.20 (7), p.075107-075107-17</ispartof><rights>American Institute of Physics</rights><rights>2008 American Institute of Physics</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-45e408d938f4d0ffd2e71a2f4c6afc75a1e670366c9062b567d0e20a31502cdf3</citedby><cites>FETCH-LOGICAL-c484t-45e408d938f4d0ffd2e71a2f4c6afc75a1e670366c9062b567d0e20a31502cdf3</cites><orcidid>0000-0002-3964-161X ; 0000-0002-3291-5067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20597561$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00384020$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Perret, Laurent</creatorcontrib><creatorcontrib>Delville, Joël</creatorcontrib><creatorcontrib>Manceau, Rémi</creatorcontrib><creatorcontrib>Bonnet, Jean-Paul</creatorcontrib><title>Turbulent inflow conditions for large-eddy simulation based on low-order empirical model</title><title>Physics of fluids (1994)</title><description>Generation of turbulent inflow boundary conditions is performed by interfacing an experimental database acquired by particle image velocimetry to a computational code. The proposed method ensures that the velocity fields introduced as inlet conditions in the computational code present correct one- and two-point spatial statistics and a realistic temporal dynamics. This approach is based on the use of the proper orthogonal decomposition (POD) to interpolate and extrapolate the experimental data onto the numerical mesh and to model both the temporal dynamics and the spatial organization of the flow in the inlet section. Realistic representation of the flow is achieved by extracting and modeling independently its coherent and incoherent parts. A low-order dynamical model is derived from the experimental database in order to provide the temporal evolution of the most energetic structures. The incoherent motion is modeled by employing time series of Gaussian random numbers to mimic the temporal evolution of higher order POD modes. Validation of the proposed method is provided by performing a large-eddy simulation of a turbulent plane mixing layer, which is compared to experimental results.</description><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluids mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KAzEURoMoWKsL3yAbFwpTb5KZzMxGKEWtUHBTwV1I86ORdFKSqdK3d8YpdSW4yiX3-w7cg9AlgQkBzm7JhNZFCaQ-QiMCVZ2VnPPjfi4h45yRU3SW0gcAsJryEXpdbuNq603TYtdYH76wCo12rQtNwjZE7GV8M5nReoeTW2-97Fd4JZPRuBu6RhaiNhGb9cZFp6TH66CNP0cnVvpkLvbvGL083C9n82zx_Pg0my4ylVd5m-WFyaHSNatsrsFaTU1JJLW54tKqspDE8BIY56oGTlcFLzUYCpKRAqjSlo3R9cB9l15solvLuBNBOjGfLkT_111a5UDhk_xmVQwpRWMPBQKi1yeI2OvrsldDdiNTd5SNslEuHQoUiroseM-8G3JJufZHzt_Qg2sxuBad6w5w828A-wbeopIU</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Perret, Laurent</creator><creator>Delville, Joël</creator><creator>Manceau, Rémi</creator><creator>Bonnet, Jean-Paul</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3964-161X</orcidid><orcidid>https://orcid.org/0000-0002-3291-5067</orcidid></search><sort><creationdate>20080701</creationdate><title>Turbulent inflow conditions for large-eddy simulation based on low-order empirical model</title><author>Perret, Laurent ; Delville, Joël ; Manceau, Rémi ; Bonnet, Jean-Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-45e408d938f4d0ffd2e71a2f4c6afc75a1e670366c9062b567d0e20a31502cdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluids mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perret, Laurent</creatorcontrib><creatorcontrib>Delville, Joël</creatorcontrib><creatorcontrib>Manceau, Rémi</creatorcontrib><creatorcontrib>Bonnet, Jean-Paul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perret, Laurent</au><au>Delville, Joël</au><au>Manceau, Rémi</au><au>Bonnet, Jean-Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent inflow conditions for large-eddy simulation based on low-order empirical model</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>20</volume><issue>7</issue><spage>075107</spage><epage>075107-17</epage><pages>075107-075107-17</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Generation of turbulent inflow boundary conditions is performed by interfacing an experimental database acquired by particle image velocimetry to a computational code. The proposed method ensures that the velocity fields introduced as inlet conditions in the computational code present correct one- and two-point spatial statistics and a realistic temporal dynamics. This approach is based on the use of the proper orthogonal decomposition (POD) to interpolate and extrapolate the experimental data onto the numerical mesh and to model both the temporal dynamics and the spatial organization of the flow in the inlet section. Realistic representation of the flow is achieved by extracting and modeling independently its coherent and incoherent parts. A low-order dynamical model is derived from the experimental database in order to provide the temporal evolution of the most energetic structures. The incoherent motion is modeled by employing time series of Gaussian random numbers to mimic the temporal evolution of higher order POD modes. Validation of the proposed method is provided by performing a large-eddy simulation of a turbulent plane mixing layer, which is compared to experimental results.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2957019</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3964-161X</orcidid><orcidid>https://orcid.org/0000-0002-3291-5067</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2008-07, Vol.20 (7), p.075107-075107-17
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_2957019
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Engineering Sciences
Exact sciences and technology
Fluid dynamics
Fluids mechanics
Fundamental areas of phenomenology (including applications)
Mechanics
Physics
Turbulence simulation and modeling
Turbulent flows, convection, and heat transfer
title Turbulent inflow conditions for large-eddy simulation based on low-order empirical model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20inflow%20conditions%20for%20large-eddy%20simulation%20based%20on%20low-order%20empirical%20model&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Perret,%20Laurent&rft.date=2008-07-01&rft.volume=20&rft.issue=7&rft.spage=075107&rft.epage=075107-17&rft.pages=075107-075107-17&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.2957019&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00384020v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true