Phononic band-gap crystals for radio frequency communications
We report on the experimental and theoretical observation of a phononic band-gap crystal operating in the megahertz regime. Our experimental data show over 25 dB suppression of bulk acoustic waves, and our theoretical models predict almost linear scaling to the gigahertz frequencies, thus laying the...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2008-06, Vol.92 (23), p.233504-233504-3 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 233504-3 |
---|---|
container_issue | 23 |
container_start_page | 233504 |
container_title | Applied physics letters |
container_volume | 92 |
creator | El-Kady, I. Olsson, R. H. Fleming, J. G. |
description | We report on the experimental and theoretical observation of a phononic band-gap crystal operating in the megahertz regime. Our experimental data show over
25
dB
suppression of bulk acoustic waves, and our theoretical models predict almost linear scaling to the gigahertz frequencies, thus laying the foundation for the implementation of such devices in radio frequency communications. We further argue that cavities in such systems offer a unique opportunity to couple acoustic energy into a resonator utilizing piezoelectric materials, while at the same time allowing the realization of a resonance cavity in high-
Q
materials such as silicon oxide, silicon, and tungsten. |
doi_str_mv | 10.1063/1.2938863 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2938863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-570a1aa59e2269a349ec38d926647ac65d1ecd0153a3d53dc669b92e0b64d6f33</originalsourceid><addsrcrecordid>eNp1z7FOwzAQgGELgUQoDLyBVwYX2xc78QASqiggVYIBZss5OxBE4mKnQ9-elJaR6XTSr9N9hFwKPhdcw7WYSwN1reGIFIJXFQMh6mNScM6BaaPEKTnL-XNalQQoyM3LRxzi0CFt3ODZu1tTTNs8uq9M25hocr6LtE3hexMG3FKMfb-Zcjd2ccjn5KSdynBxmDPytrx_XTyy1fPD0-JuxVDW5chUxZ1wTpkgpTYOShMQam-k1mXlUCsvAnouFDjwCjxqbRojA2906XULMCNX-7uYYs4ptHadut6lrRXc7txW2IN7am_3bcZu_H3z__gPb3d4O-EtJvgBuHxfww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phononic band-gap crystals for radio frequency communications</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>El-Kady, I. ; Olsson, R. H. ; Fleming, J. G.</creator><creatorcontrib>El-Kady, I. ; Olsson, R. H. ; Fleming, J. G.</creatorcontrib><description>We report on the experimental and theoretical observation of a phononic band-gap crystal operating in the megahertz regime. Our experimental data show over
25
dB
suppression of bulk acoustic waves, and our theoretical models predict almost linear scaling to the gigahertz frequencies, thus laying the foundation for the implementation of such devices in radio frequency communications. We further argue that cavities in such systems offer a unique opportunity to couple acoustic energy into a resonator utilizing piezoelectric materials, while at the same time allowing the realization of a resonance cavity in high-
Q
materials such as silicon oxide, silicon, and tungsten.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.2938863</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2008-06, Vol.92 (23), p.233504-233504-3</ispartof><rights>2008 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-570a1aa59e2269a349ec38d926647ac65d1ecd0153a3d53dc669b92e0b64d6f33</citedby><cites>FETCH-LOGICAL-c284t-570a1aa59e2269a349ec38d926647ac65d1ecd0153a3d53dc669b92e0b64d6f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.2938863$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4511,27923,27924,76255,76261</link.rule.ids></links><search><creatorcontrib>El-Kady, I.</creatorcontrib><creatorcontrib>Olsson, R. H.</creatorcontrib><creatorcontrib>Fleming, J. G.</creatorcontrib><title>Phononic band-gap crystals for radio frequency communications</title><title>Applied physics letters</title><description>We report on the experimental and theoretical observation of a phononic band-gap crystal operating in the megahertz regime. Our experimental data show over
25
dB
suppression of bulk acoustic waves, and our theoretical models predict almost linear scaling to the gigahertz frequencies, thus laying the foundation for the implementation of such devices in radio frequency communications. We further argue that cavities in such systems offer a unique opportunity to couple acoustic energy into a resonator utilizing piezoelectric materials, while at the same time allowing the realization of a resonance cavity in high-
Q
materials such as silicon oxide, silicon, and tungsten.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1z7FOwzAQgGELgUQoDLyBVwYX2xc78QASqiggVYIBZss5OxBE4mKnQ9-elJaR6XTSr9N9hFwKPhdcw7WYSwN1reGIFIJXFQMh6mNScM6BaaPEKTnL-XNalQQoyM3LRxzi0CFt3ODZu1tTTNs8uq9M25hocr6LtE3hexMG3FKMfb-Zcjd2ccjn5KSdynBxmDPytrx_XTyy1fPD0-JuxVDW5chUxZ1wTpkgpTYOShMQam-k1mXlUCsvAnouFDjwCjxqbRojA2906XULMCNX-7uYYs4ptHadut6lrRXc7txW2IN7am_3bcZu_H3z__gPb3d4O-EtJvgBuHxfww</recordid><startdate>20080609</startdate><enddate>20080609</enddate><creator>El-Kady, I.</creator><creator>Olsson, R. H.</creator><creator>Fleming, J. G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080609</creationdate><title>Phononic band-gap crystals for radio frequency communications</title><author>El-Kady, I. ; Olsson, R. H. ; Fleming, J. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-570a1aa59e2269a349ec38d926647ac65d1ecd0153a3d53dc669b92e0b64d6f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Kady, I.</creatorcontrib><creatorcontrib>Olsson, R. H.</creatorcontrib><creatorcontrib>Fleming, J. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Kady, I.</au><au>Olsson, R. H.</au><au>Fleming, J. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phononic band-gap crystals for radio frequency communications</atitle><jtitle>Applied physics letters</jtitle><date>2008-06-09</date><risdate>2008</risdate><volume>92</volume><issue>23</issue><spage>233504</spage><epage>233504-3</epage><pages>233504-233504-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report on the experimental and theoretical observation of a phononic band-gap crystal operating in the megahertz regime. Our experimental data show over
25
dB
suppression of bulk acoustic waves, and our theoretical models predict almost linear scaling to the gigahertz frequencies, thus laying the foundation for the implementation of such devices in radio frequency communications. We further argue that cavities in such systems offer a unique opportunity to couple acoustic energy into a resonator utilizing piezoelectric materials, while at the same time allowing the realization of a resonance cavity in high-
Q
materials such as silicon oxide, silicon, and tungsten.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2938863</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2008-06, Vol.92 (23), p.233504-233504-3 |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_2938863 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
title | Phononic band-gap crystals for radio frequency communications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phononic%20band-gap%20crystals%20for%20radio%20frequency%20communications&rft.jtitle=Applied%20physics%20letters&rft.au=El-Kady,%20I.&rft.date=2008-06-09&rft.volume=92&rft.issue=23&rft.spage=233504&rft.epage=233504-3&rft.pages=233504-233504-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.2938863&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |