Phononic band-gap crystals for radio frequency communications

We report on the experimental and theoretical observation of a phononic band-gap crystal operating in the megahertz regime. Our experimental data show over 25 dB suppression of bulk acoustic waves, and our theoretical models predict almost linear scaling to the gigahertz frequencies, thus laying the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2008-06, Vol.92 (23), p.233504-233504-3
Hauptverfasser: El-Kady, I., Olsson, R. H., Fleming, J. G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233504-3
container_issue 23
container_start_page 233504
container_title Applied physics letters
container_volume 92
creator El-Kady, I.
Olsson, R. H.
Fleming, J. G.
description We report on the experimental and theoretical observation of a phononic band-gap crystal operating in the megahertz regime. Our experimental data show over 25 dB suppression of bulk acoustic waves, and our theoretical models predict almost linear scaling to the gigahertz frequencies, thus laying the foundation for the implementation of such devices in radio frequency communications. We further argue that cavities in such systems offer a unique opportunity to couple acoustic energy into a resonator utilizing piezoelectric materials, while at the same time allowing the realization of a resonance cavity in high- Q materials such as silicon oxide, silicon, and tungsten.
doi_str_mv 10.1063/1.2938863
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2938863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-570a1aa59e2269a349ec38d926647ac65d1ecd0153a3d53dc669b92e0b64d6f33</originalsourceid><addsrcrecordid>eNp1z7FOwzAQgGELgUQoDLyBVwYX2xc78QASqiggVYIBZss5OxBE4mKnQ9-elJaR6XTSr9N9hFwKPhdcw7WYSwN1reGIFIJXFQMh6mNScM6BaaPEKTnL-XNalQQoyM3LRxzi0CFt3ODZu1tTTNs8uq9M25hocr6LtE3hexMG3FKMfb-Zcjd2ccjn5KSdynBxmDPytrx_XTyy1fPD0-JuxVDW5chUxZ1wTpkgpTYOShMQam-k1mXlUCsvAnouFDjwCjxqbRojA2906XULMCNX-7uYYs4ptHadut6lrRXc7txW2IN7am_3bcZu_H3z__gPb3d4O-EtJvgBuHxfww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phononic band-gap crystals for radio frequency communications</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>El-Kady, I. ; Olsson, R. H. ; Fleming, J. G.</creator><creatorcontrib>El-Kady, I. ; Olsson, R. H. ; Fleming, J. G.</creatorcontrib><description>We report on the experimental and theoretical observation of a phononic band-gap crystal operating in the megahertz regime. Our experimental data show over 25 dB suppression of bulk acoustic waves, and our theoretical models predict almost linear scaling to the gigahertz frequencies, thus laying the foundation for the implementation of such devices in radio frequency communications. We further argue that cavities in such systems offer a unique opportunity to couple acoustic energy into a resonator utilizing piezoelectric materials, while at the same time allowing the realization of a resonance cavity in high- Q materials such as silicon oxide, silicon, and tungsten.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.2938863</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2008-06, Vol.92 (23), p.233504-233504-3</ispartof><rights>2008 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-570a1aa59e2269a349ec38d926647ac65d1ecd0153a3d53dc669b92e0b64d6f33</citedby><cites>FETCH-LOGICAL-c284t-570a1aa59e2269a349ec38d926647ac65d1ecd0153a3d53dc669b92e0b64d6f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.2938863$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4511,27923,27924,76255,76261</link.rule.ids></links><search><creatorcontrib>El-Kady, I.</creatorcontrib><creatorcontrib>Olsson, R. H.</creatorcontrib><creatorcontrib>Fleming, J. G.</creatorcontrib><title>Phononic band-gap crystals for radio frequency communications</title><title>Applied physics letters</title><description>We report on the experimental and theoretical observation of a phononic band-gap crystal operating in the megahertz regime. Our experimental data show over 25 dB suppression of bulk acoustic waves, and our theoretical models predict almost linear scaling to the gigahertz frequencies, thus laying the foundation for the implementation of such devices in radio frequency communications. We further argue that cavities in such systems offer a unique opportunity to couple acoustic energy into a resonator utilizing piezoelectric materials, while at the same time allowing the realization of a resonance cavity in high- Q materials such as silicon oxide, silicon, and tungsten.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1z7FOwzAQgGELgUQoDLyBVwYX2xc78QASqiggVYIBZss5OxBE4mKnQ9-elJaR6XTSr9N9hFwKPhdcw7WYSwN1reGIFIJXFQMh6mNScM6BaaPEKTnL-XNalQQoyM3LRxzi0CFt3ODZu1tTTNs8uq9M25hocr6LtE3hexMG3FKMfb-Zcjd2ccjn5KSdynBxmDPytrx_XTyy1fPD0-JuxVDW5chUxZ1wTpkgpTYOShMQam-k1mXlUCsvAnouFDjwCjxqbRojA2906XULMCNX-7uYYs4ptHadut6lrRXc7txW2IN7am_3bcZu_H3z__gPb3d4O-EtJvgBuHxfww</recordid><startdate>20080609</startdate><enddate>20080609</enddate><creator>El-Kady, I.</creator><creator>Olsson, R. H.</creator><creator>Fleming, J. G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080609</creationdate><title>Phononic band-gap crystals for radio frequency communications</title><author>El-Kady, I. ; Olsson, R. H. ; Fleming, J. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-570a1aa59e2269a349ec38d926647ac65d1ecd0153a3d53dc669b92e0b64d6f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Kady, I.</creatorcontrib><creatorcontrib>Olsson, R. H.</creatorcontrib><creatorcontrib>Fleming, J. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Kady, I.</au><au>Olsson, R. H.</au><au>Fleming, J. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phononic band-gap crystals for radio frequency communications</atitle><jtitle>Applied physics letters</jtitle><date>2008-06-09</date><risdate>2008</risdate><volume>92</volume><issue>23</issue><spage>233504</spage><epage>233504-3</epage><pages>233504-233504-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report on the experimental and theoretical observation of a phononic band-gap crystal operating in the megahertz regime. Our experimental data show over 25 dB suppression of bulk acoustic waves, and our theoretical models predict almost linear scaling to the gigahertz frequencies, thus laying the foundation for the implementation of such devices in radio frequency communications. We further argue that cavities in such systems offer a unique opportunity to couple acoustic energy into a resonator utilizing piezoelectric materials, while at the same time allowing the realization of a resonance cavity in high- Q materials such as silicon oxide, silicon, and tungsten.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2938863</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2008-06, Vol.92 (23), p.233504-233504-3
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_2938863
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Phononic band-gap crystals for radio frequency communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phononic%20band-gap%20crystals%20for%20radio%20frequency%20communications&rft.jtitle=Applied%20physics%20letters&rft.au=El-Kady,%20I.&rft.date=2008-06-09&rft.volume=92&rft.issue=23&rft.spage=233504&rft.epage=233504-3&rft.pages=233504-233504-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.2938863&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true