Theoretical analysis of adsorption-induced microcantilever bending

Microcantilever-based techniques can be used to explore the autonomy and property of biomolecules (e.g., DNA and single actin filaments) which, in measurement, are adsorbed on the cantilever surface. Here, an energy method is presented to predict the cantilever deflection induced by adsorbed atoms/m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2008-05, Vol.103 (9), p.093506-093506-6
Hauptverfasser: Zhang, Ji-Qiao, Yu, Shou-Wen, Feng, Xi-Qiao, Wang, Gang-Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 093506-6
container_issue 9
container_start_page 093506
container_title Journal of applied physics
container_volume 103
creator Zhang, Ji-Qiao
Yu, Shou-Wen
Feng, Xi-Qiao
Wang, Gang-Feng
description Microcantilever-based techniques can be used to explore the autonomy and property of biomolecules (e.g., DNA and single actin filaments) which, in measurement, are adsorbed on the cantilever surface. Here, an energy method is presented to predict the cantilever deflection induced by adsorbed atoms/molecules. The cantilever is modeled as a sandwich beam containing two surface layers of a finite thickness and a bulk layer between them. The adsorptions of O atoms on Si(100) and Hg atoms on Au(100) are taken as two representative examples. We demonstrate that physisorption can induce distinctly different deformation behaviors of cantilevers, which depend not only on the adatoms but also on the substrate material. These results are consistent with relevant experimental observations. This study is helpful for optimal design of microcantilever-based measurement techniques.
doi_str_mv 10.1063/1.2912727
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2912727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2f9999ded345b09fef85b9928a72865dd480ab4cc2fabb38865eb38279ccbee93</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_8FePaTmY9MkF0GLVaHgpZ5DPiYa2WZLsgr9925pBS_O5YXhYZjnReiakhklc35LZ0xTJpk8QRNKlMZSCHKKJoQwipWW-hxd1PpJCKWK6wl6WH9AX2BI3naNzbbb1VSbPjY21L5sh9RnnHL48hCaTfKl9zYPqYNvKI2DHFJ-v0Rn0XYVro45RW_Lx_XiGa9en14W9yvsORMDZlGPEyDwVjiiI0QlnNZMWcnUXITQKmJd6z2L1jmuxh2MwaT23gFoPkU3h7vjF7UWiGZb0saWnaHE7OUNNUf5kb07sNWnwe4t_of_NGB-G-A_7O9jJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical analysis of adsorption-induced microcantilever bending</title><source>AIP Journals Complete</source><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><source>Alma/SFX Local Collection</source><creator>Zhang, Ji-Qiao ; Yu, Shou-Wen ; Feng, Xi-Qiao ; Wang, Gang-Feng</creator><creatorcontrib>Zhang, Ji-Qiao ; Yu, Shou-Wen ; Feng, Xi-Qiao ; Wang, Gang-Feng</creatorcontrib><description>Microcantilever-based techniques can be used to explore the autonomy and property of biomolecules (e.g., DNA and single actin filaments) which, in measurement, are adsorbed on the cantilever surface. Here, an energy method is presented to predict the cantilever deflection induced by adsorbed atoms/molecules. The cantilever is modeled as a sandwich beam containing two surface layers of a finite thickness and a bulk layer between them. The adsorptions of O atoms on Si(100) and Hg atoms on Au(100) are taken as two representative examples. We demonstrate that physisorption can induce distinctly different deformation behaviors of cantilevers, which depend not only on the adatoms but also on the substrate material. These results are consistent with relevant experimental observations. This study is helpful for optimal design of microcantilever-based measurement techniques.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.2912727</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2008-05, Vol.103 (9), p.093506-093506-6</ispartof><rights>2008 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2f9999ded345b09fef85b9928a72865dd480ab4cc2fabb38865eb38279ccbee93</citedby><cites>FETCH-LOGICAL-c325t-2f9999ded345b09fef85b9928a72865dd480ab4cc2fabb38865eb38279ccbee93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.2912727$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>Zhang, Ji-Qiao</creatorcontrib><creatorcontrib>Yu, Shou-Wen</creatorcontrib><creatorcontrib>Feng, Xi-Qiao</creatorcontrib><creatorcontrib>Wang, Gang-Feng</creatorcontrib><title>Theoretical analysis of adsorption-induced microcantilever bending</title><title>Journal of applied physics</title><description>Microcantilever-based techniques can be used to explore the autonomy and property of biomolecules (e.g., DNA and single actin filaments) which, in measurement, are adsorbed on the cantilever surface. Here, an energy method is presented to predict the cantilever deflection induced by adsorbed atoms/molecules. The cantilever is modeled as a sandwich beam containing two surface layers of a finite thickness and a bulk layer between them. The adsorptions of O atoms on Si(100) and Hg atoms on Au(100) are taken as two representative examples. We demonstrate that physisorption can induce distinctly different deformation behaviors of cantilevers, which depend not only on the adatoms but also on the substrate material. These results are consistent with relevant experimental observations. This study is helpful for optimal design of microcantilever-based measurement techniques.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_8FePaTmY9MkF0GLVaHgpZ5DPiYa2WZLsgr9925pBS_O5YXhYZjnReiakhklc35LZ0xTJpk8QRNKlMZSCHKKJoQwipWW-hxd1PpJCKWK6wl6WH9AX2BI3naNzbbb1VSbPjY21L5sh9RnnHL48hCaTfKl9zYPqYNvKI2DHFJ-v0Rn0XYVro45RW_Lx_XiGa9en14W9yvsORMDZlGPEyDwVjiiI0QlnNZMWcnUXITQKmJd6z2L1jmuxh2MwaT23gFoPkU3h7vjF7UWiGZb0saWnaHE7OUNNUf5kb07sNWnwe4t_of_NGB-G-A_7O9jJg</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Zhang, Ji-Qiao</creator><creator>Yu, Shou-Wen</creator><creator>Feng, Xi-Qiao</creator><creator>Wang, Gang-Feng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080501</creationdate><title>Theoretical analysis of adsorption-induced microcantilever bending</title><author>Zhang, Ji-Qiao ; Yu, Shou-Wen ; Feng, Xi-Qiao ; Wang, Gang-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2f9999ded345b09fef85b9928a72865dd480ab4cc2fabb38865eb38279ccbee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ji-Qiao</creatorcontrib><creatorcontrib>Yu, Shou-Wen</creatorcontrib><creatorcontrib>Feng, Xi-Qiao</creatorcontrib><creatorcontrib>Wang, Gang-Feng</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ji-Qiao</au><au>Yu, Shou-Wen</au><au>Feng, Xi-Qiao</au><au>Wang, Gang-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical analysis of adsorption-induced microcantilever bending</atitle><jtitle>Journal of applied physics</jtitle><date>2008-05-01</date><risdate>2008</risdate><volume>103</volume><issue>9</issue><spage>093506</spage><epage>093506-6</epage><pages>093506-093506-6</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Microcantilever-based techniques can be used to explore the autonomy and property of biomolecules (e.g., DNA and single actin filaments) which, in measurement, are adsorbed on the cantilever surface. Here, an energy method is presented to predict the cantilever deflection induced by adsorbed atoms/molecules. The cantilever is modeled as a sandwich beam containing two surface layers of a finite thickness and a bulk layer between them. The adsorptions of O atoms on Si(100) and Hg atoms on Au(100) are taken as two representative examples. We demonstrate that physisorption can induce distinctly different deformation behaviors of cantilevers, which depend not only on the adatoms but also on the substrate material. These results are consistent with relevant experimental observations. This study is helpful for optimal design of microcantilever-based measurement techniques.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2912727</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2008-05, Vol.103 (9), p.093506-093506-6
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_2912727
source AIP Journals Complete; AIP_美国物理联合会期刊回溯(NSTL购买); Alma/SFX Local Collection
title Theoretical analysis of adsorption-induced microcantilever bending
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20analysis%20of%20adsorption-induced%20microcantilever%20bending&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Zhang,%20Ji-Qiao&rft.date=2008-05-01&rft.volume=103&rft.issue=9&rft.spage=093506&rft.epage=093506-6&rft.pages=093506-093506-6&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.2912727&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true