Theoretical analysis of adsorption-induced microcantilever bending
Microcantilever-based techniques can be used to explore the autonomy and property of biomolecules (e.g., DNA and single actin filaments) which, in measurement, are adsorbed on the cantilever surface. Here, an energy method is presented to predict the cantilever deflection induced by adsorbed atoms/m...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2008-05, Vol.103 (9), p.093506-093506-6 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 093506-6 |
---|---|
container_issue | 9 |
container_start_page | 093506 |
container_title | Journal of applied physics |
container_volume | 103 |
creator | Zhang, Ji-Qiao Yu, Shou-Wen Feng, Xi-Qiao Wang, Gang-Feng |
description | Microcantilever-based techniques can be used to explore the autonomy and property of biomolecules (e.g., DNA and single actin filaments) which, in measurement, are adsorbed on the cantilever surface. Here, an energy method is presented to predict the cantilever deflection induced by adsorbed atoms/molecules. The cantilever is modeled as a sandwich beam containing two surface layers of a finite thickness and a bulk layer between them. The adsorptions of O atoms on Si(100) and Hg atoms on Au(100) are taken as two representative examples. We demonstrate that physisorption can induce distinctly different deformation behaviors of cantilevers, which depend not only on the adatoms but also on the substrate material. These results are consistent with relevant experimental observations. This study is helpful for optimal design of microcantilever-based measurement techniques. |
doi_str_mv | 10.1063/1.2912727 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2912727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2f9999ded345b09fef85b9928a72865dd480ab4cc2fabb38865eb38279ccbee93</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_8FePaTmY9MkF0GLVaHgpZ5DPiYa2WZLsgr9925pBS_O5YXhYZjnReiakhklc35LZ0xTJpk8QRNKlMZSCHKKJoQwipWW-hxd1PpJCKWK6wl6WH9AX2BI3naNzbbb1VSbPjY21L5sh9RnnHL48hCaTfKl9zYPqYNvKI2DHFJ-v0Rn0XYVro45RW_Lx_XiGa9en14W9yvsORMDZlGPEyDwVjiiI0QlnNZMWcnUXITQKmJd6z2L1jmuxh2MwaT23gFoPkU3h7vjF7UWiGZb0saWnaHE7OUNNUf5kb07sNWnwe4t_of_NGB-G-A_7O9jJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical analysis of adsorption-induced microcantilever bending</title><source>AIP Journals Complete</source><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><source>Alma/SFX Local Collection</source><creator>Zhang, Ji-Qiao ; Yu, Shou-Wen ; Feng, Xi-Qiao ; Wang, Gang-Feng</creator><creatorcontrib>Zhang, Ji-Qiao ; Yu, Shou-Wen ; Feng, Xi-Qiao ; Wang, Gang-Feng</creatorcontrib><description>Microcantilever-based techniques can be used to explore the autonomy and property of biomolecules (e.g., DNA and single actin filaments) which, in measurement, are adsorbed on the cantilever surface. Here, an energy method is presented to predict the cantilever deflection induced by adsorbed atoms/molecules. The cantilever is modeled as a sandwich beam containing two surface layers of a finite thickness and a bulk layer between them. The adsorptions of O atoms on Si(100) and Hg atoms on Au(100) are taken as two representative examples. We demonstrate that physisorption can induce distinctly different deformation behaviors of cantilevers, which depend not only on the adatoms but also on the substrate material. These results are consistent with relevant experimental observations. This study is helpful for optimal design of microcantilever-based measurement techniques.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.2912727</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2008-05, Vol.103 (9), p.093506-093506-6</ispartof><rights>2008 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2f9999ded345b09fef85b9928a72865dd480ab4cc2fabb38865eb38279ccbee93</citedby><cites>FETCH-LOGICAL-c325t-2f9999ded345b09fef85b9928a72865dd480ab4cc2fabb38865eb38279ccbee93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.2912727$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>Zhang, Ji-Qiao</creatorcontrib><creatorcontrib>Yu, Shou-Wen</creatorcontrib><creatorcontrib>Feng, Xi-Qiao</creatorcontrib><creatorcontrib>Wang, Gang-Feng</creatorcontrib><title>Theoretical analysis of adsorption-induced microcantilever bending</title><title>Journal of applied physics</title><description>Microcantilever-based techniques can be used to explore the autonomy and property of biomolecules (e.g., DNA and single actin filaments) which, in measurement, are adsorbed on the cantilever surface. Here, an energy method is presented to predict the cantilever deflection induced by adsorbed atoms/molecules. The cantilever is modeled as a sandwich beam containing two surface layers of a finite thickness and a bulk layer between them. The adsorptions of O atoms on Si(100) and Hg atoms on Au(100) are taken as two representative examples. We demonstrate that physisorption can induce distinctly different deformation behaviors of cantilevers, which depend not only on the adatoms but also on the substrate material. These results are consistent with relevant experimental observations. This study is helpful for optimal design of microcantilever-based measurement techniques.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_8FePaTmY9MkF0GLVaHgpZ5DPiYa2WZLsgr9925pBS_O5YXhYZjnReiakhklc35LZ0xTJpk8QRNKlMZSCHKKJoQwipWW-hxd1PpJCKWK6wl6WH9AX2BI3naNzbbb1VSbPjY21L5sh9RnnHL48hCaTfKl9zYPqYNvKI2DHFJ-v0Rn0XYVro45RW_Lx_XiGa9en14W9yvsORMDZlGPEyDwVjiiI0QlnNZMWcnUXITQKmJd6z2L1jmuxh2MwaT23gFoPkU3h7vjF7UWiGZb0saWnaHE7OUNNUf5kb07sNWnwe4t_of_NGB-G-A_7O9jJg</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Zhang, Ji-Qiao</creator><creator>Yu, Shou-Wen</creator><creator>Feng, Xi-Qiao</creator><creator>Wang, Gang-Feng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080501</creationdate><title>Theoretical analysis of adsorption-induced microcantilever bending</title><author>Zhang, Ji-Qiao ; Yu, Shou-Wen ; Feng, Xi-Qiao ; Wang, Gang-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2f9999ded345b09fef85b9928a72865dd480ab4cc2fabb38865eb38279ccbee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ji-Qiao</creatorcontrib><creatorcontrib>Yu, Shou-Wen</creatorcontrib><creatorcontrib>Feng, Xi-Qiao</creatorcontrib><creatorcontrib>Wang, Gang-Feng</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ji-Qiao</au><au>Yu, Shou-Wen</au><au>Feng, Xi-Qiao</au><au>Wang, Gang-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical analysis of adsorption-induced microcantilever bending</atitle><jtitle>Journal of applied physics</jtitle><date>2008-05-01</date><risdate>2008</risdate><volume>103</volume><issue>9</issue><spage>093506</spage><epage>093506-6</epage><pages>093506-093506-6</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Microcantilever-based techniques can be used to explore the autonomy and property of biomolecules (e.g., DNA and single actin filaments) which, in measurement, are adsorbed on the cantilever surface. Here, an energy method is presented to predict the cantilever deflection induced by adsorbed atoms/molecules. The cantilever is modeled as a sandwich beam containing two surface layers of a finite thickness and a bulk layer between them. The adsorptions of O atoms on Si(100) and Hg atoms on Au(100) are taken as two representative examples. We demonstrate that physisorption can induce distinctly different deformation behaviors of cantilevers, which depend not only on the adatoms but also on the substrate material. These results are consistent with relevant experimental observations. This study is helpful for optimal design of microcantilever-based measurement techniques.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2912727</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2008-05, Vol.103 (9), p.093506-093506-6 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_2912727 |
source | AIP Journals Complete; AIP_美国物理联合会期刊回溯(NSTL购买); Alma/SFX Local Collection |
title | Theoretical analysis of adsorption-induced microcantilever bending |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20analysis%20of%20adsorption-induced%20microcantilever%20bending&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Zhang,%20Ji-Qiao&rft.date=2008-05-01&rft.volume=103&rft.issue=9&rft.spage=093506&rft.epage=093506-6&rft.pages=093506-093506-6&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.2912727&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |