Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node

We have demonstrated floating nanodot gate memory (FNGM) fabrication by utilizing uniform biomineralized cobalt oxide (Co3O4) nanodots (Co-BNDs) which are biochemically synthesized in the vacant cavity of supramolecular protein, ferritin. High-density Co-BND array (>6.5×1011cm−2) formed on Si sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2008-04, Vol.103 (7)
Hauptverfasser: Miura, Atsushi, Uraoka, Yukiharu, Fuyuki, Takashi, Yoshii, Shigeo, Yamashita, Ichiro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of applied physics
container_volume 103
creator Miura, Atsushi
Uraoka, Yukiharu
Fuyuki, Takashi
Yoshii, Shigeo
Yamashita, Ichiro
description We have demonstrated floating nanodot gate memory (FNGM) fabrication by utilizing uniform biomineralized cobalt oxide (Co3O4) nanodots (Co-BNDs) which are biochemically synthesized in the vacant cavity of supramolecular protein, ferritin. High-density Co-BND array (>6.5×1011cm−2) formed on Si substrate with 3-nm-thick tunnel SiO2 is embedded in metal-oxide-semiconductor (MOS) stacked structure and used as the floating gate of FNGM. Fabricated Co-BND MOS capacitors and metal-oxide-semiconductor field effect transistors show the hysteresis loop due to the electron and hole confinement in the embedded Co-BND. Fabricated MOS memories show wide memory window size of 3–4V under 10V operation, good charge retention characteristics until 104s after charge programming, and stress endurance until 105 write/erase operation. Observed charge injection thresholds suggest that charge injection through the direct tunneling from Si to the energy levels in the conduction and valence bands of Co3O4 and long charge retention characteristics implies prompt charge confinement to the deeper energy level of metal Co which is formed during the annealing in the device processing.
doi_str_mv 10.1063/1.2888357
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2888357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_2888357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-424844f5919bd9bc02dc5117cb6b3e04a174bf8115bed132b9f2167bd8dad9eb3</originalsourceid><addsrcrecordid>eNo9kM1KxDAYRYMoWEcXvkG2LjrmS9ImWcrgOMKAG125KPntRNpGkoKMT2_FwdWBe7l3cRC6BbIG0rJ7WFMpJWvEGaqASFWLpiHnqCKEQi2VUJfoqpQPQgAkUxV63w5Jz3Hq8aSn5NKMez17PPox5SMO2uRolz5N-CvOB2xiGuPksx7it3f_G12wPejce1zmlPXCJffX6CLoofibE1fobfv4utnV-5en583Dvra05XPNKZech0aBMk4ZS6izDYCwpjXME65BcBMkQGO8A0aNChRaYZx02ilv2Ard_f3anErJPnSfOY46Hzsg3a-VDrqTFfYDlZJWDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Miura, Atsushi ; Uraoka, Yukiharu ; Fuyuki, Takashi ; Yoshii, Shigeo ; Yamashita, Ichiro</creator><creatorcontrib>Miura, Atsushi ; Uraoka, Yukiharu ; Fuyuki, Takashi ; Yoshii, Shigeo ; Yamashita, Ichiro</creatorcontrib><description>We have demonstrated floating nanodot gate memory (FNGM) fabrication by utilizing uniform biomineralized cobalt oxide (Co3O4) nanodots (Co-BNDs) which are biochemically synthesized in the vacant cavity of supramolecular protein, ferritin. High-density Co-BND array (&gt;6.5×1011cm−2) formed on Si substrate with 3-nm-thick tunnel SiO2 is embedded in metal-oxide-semiconductor (MOS) stacked structure and used as the floating gate of FNGM. Fabricated Co-BND MOS capacitors and metal-oxide-semiconductor field effect transistors show the hysteresis loop due to the electron and hole confinement in the embedded Co-BND. Fabricated MOS memories show wide memory window size of 3–4V under 10V operation, good charge retention characteristics until 104s after charge programming, and stress endurance until 105 write/erase operation. Observed charge injection thresholds suggest that charge injection through the direct tunneling from Si to the energy levels in the conduction and valence bands of Co3O4 and long charge retention characteristics implies prompt charge confinement to the deeper energy level of metal Co which is formed during the annealing in the device processing.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.2888357</identifier><language>eng</language><ispartof>Journal of applied physics, 2008-04, Vol.103 (7)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-424844f5919bd9bc02dc5117cb6b3e04a174bf8115bed132b9f2167bd8dad9eb3</citedby><cites>FETCH-LOGICAL-c264t-424844f5919bd9bc02dc5117cb6b3e04a174bf8115bed132b9f2167bd8dad9eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Miura, Atsushi</creatorcontrib><creatorcontrib>Uraoka, Yukiharu</creatorcontrib><creatorcontrib>Fuyuki, Takashi</creatorcontrib><creatorcontrib>Yoshii, Shigeo</creatorcontrib><creatorcontrib>Yamashita, Ichiro</creatorcontrib><title>Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node</title><title>Journal of applied physics</title><description>We have demonstrated floating nanodot gate memory (FNGM) fabrication by utilizing uniform biomineralized cobalt oxide (Co3O4) nanodots (Co-BNDs) which are biochemically synthesized in the vacant cavity of supramolecular protein, ferritin. High-density Co-BND array (&gt;6.5×1011cm−2) formed on Si substrate with 3-nm-thick tunnel SiO2 is embedded in metal-oxide-semiconductor (MOS) stacked structure and used as the floating gate of FNGM. Fabricated Co-BND MOS capacitors and metal-oxide-semiconductor field effect transistors show the hysteresis loop due to the electron and hole confinement in the embedded Co-BND. Fabricated MOS memories show wide memory window size of 3–4V under 10V operation, good charge retention characteristics until 104s after charge programming, and stress endurance until 105 write/erase operation. Observed charge injection thresholds suggest that charge injection through the direct tunneling from Si to the energy levels in the conduction and valence bands of Co3O4 and long charge retention characteristics implies prompt charge confinement to the deeper energy level of metal Co which is formed during the annealing in the device processing.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KxDAYRYMoWEcXvkG2LjrmS9ImWcrgOMKAG125KPntRNpGkoKMT2_FwdWBe7l3cRC6BbIG0rJ7WFMpJWvEGaqASFWLpiHnqCKEQi2VUJfoqpQPQgAkUxV63w5Jz3Hq8aSn5NKMez17PPox5SMO2uRolz5N-CvOB2xiGuPksx7it3f_G12wPejce1zmlPXCJffX6CLoofibE1fobfv4utnV-5en583Dvra05XPNKZech0aBMk4ZS6izDYCwpjXME65BcBMkQGO8A0aNChRaYZx02ilv2Ard_f3anErJPnSfOY46Hzsg3a-VDrqTFfYDlZJWDQ</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Miura, Atsushi</creator><creator>Uraoka, Yukiharu</creator><creator>Fuyuki, Takashi</creator><creator>Yoshii, Shigeo</creator><creator>Yamashita, Ichiro</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080401</creationdate><title>Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node</title><author>Miura, Atsushi ; Uraoka, Yukiharu ; Fuyuki, Takashi ; Yoshii, Shigeo ; Yamashita, Ichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-424844f5919bd9bc02dc5117cb6b3e04a174bf8115bed132b9f2167bd8dad9eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miura, Atsushi</creatorcontrib><creatorcontrib>Uraoka, Yukiharu</creatorcontrib><creatorcontrib>Fuyuki, Takashi</creatorcontrib><creatorcontrib>Yoshii, Shigeo</creatorcontrib><creatorcontrib>Yamashita, Ichiro</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miura, Atsushi</au><au>Uraoka, Yukiharu</au><au>Fuyuki, Takashi</au><au>Yoshii, Shigeo</au><au>Yamashita, Ichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node</atitle><jtitle>Journal of applied physics</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>103</volume><issue>7</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We have demonstrated floating nanodot gate memory (FNGM) fabrication by utilizing uniform biomineralized cobalt oxide (Co3O4) nanodots (Co-BNDs) which are biochemically synthesized in the vacant cavity of supramolecular protein, ferritin. High-density Co-BND array (&gt;6.5×1011cm−2) formed on Si substrate with 3-nm-thick tunnel SiO2 is embedded in metal-oxide-semiconductor (MOS) stacked structure and used as the floating gate of FNGM. Fabricated Co-BND MOS capacitors and metal-oxide-semiconductor field effect transistors show the hysteresis loop due to the electron and hole confinement in the embedded Co-BND. Fabricated MOS memories show wide memory window size of 3–4V under 10V operation, good charge retention characteristics until 104s after charge programming, and stress endurance until 105 write/erase operation. Observed charge injection thresholds suggest that charge injection through the direct tunneling from Si to the energy levels in the conduction and valence bands of Co3O4 and long charge retention characteristics implies prompt charge confinement to the deeper energy level of metal Co which is formed during the annealing in the device processing.</abstract><doi>10.1063/1.2888357</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2008-04, Vol.103 (7)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_2888357
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Floating%20nanodot%20gate%20memory%20fabrication%20with%20biomineralized%20nanodot%20as%20charge%20storage%20node&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Miura,%20Atsushi&rft.date=2008-04-01&rft.volume=103&rft.issue=7&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.2888357&rft_dat=%3Ccrossref%3E10_1063_1_2888357%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true