Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node
We have demonstrated floating nanodot gate memory (FNGM) fabrication by utilizing uniform biomineralized cobalt oxide (Co3O4) nanodots (Co-BNDs) which are biochemically synthesized in the vacant cavity of supramolecular protein, ferritin. High-density Co-BND array (>6.5×1011cm−2) formed on Si sub...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2008-04, Vol.103 (7) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 103 |
creator | Miura, Atsushi Uraoka, Yukiharu Fuyuki, Takashi Yoshii, Shigeo Yamashita, Ichiro |
description | We have demonstrated floating nanodot gate memory (FNGM) fabrication by utilizing uniform biomineralized cobalt oxide (Co3O4) nanodots (Co-BNDs) which are biochemically synthesized in the vacant cavity of supramolecular protein, ferritin. High-density Co-BND array (>6.5×1011cm−2) formed on Si substrate with 3-nm-thick tunnel SiO2 is embedded in metal-oxide-semiconductor (MOS) stacked structure and used as the floating gate of FNGM. Fabricated Co-BND MOS capacitors and metal-oxide-semiconductor field effect transistors show the hysteresis loop due to the electron and hole confinement in the embedded Co-BND. Fabricated MOS memories show wide memory window size of 3–4V under 10V operation, good charge retention characteristics until 104s after charge programming, and stress endurance until 105 write/erase operation. Observed charge injection thresholds suggest that charge injection through the direct tunneling from Si to the energy levels in the conduction and valence bands of Co3O4 and long charge retention characteristics implies prompt charge confinement to the deeper energy level of metal Co which is formed during the annealing in the device processing. |
doi_str_mv | 10.1063/1.2888357 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2888357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_2888357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-424844f5919bd9bc02dc5117cb6b3e04a174bf8115bed132b9f2167bd8dad9eb3</originalsourceid><addsrcrecordid>eNo9kM1KxDAYRYMoWEcXvkG2LjrmS9ImWcrgOMKAG125KPntRNpGkoKMT2_FwdWBe7l3cRC6BbIG0rJ7WFMpJWvEGaqASFWLpiHnqCKEQi2VUJfoqpQPQgAkUxV63w5Jz3Hq8aSn5NKMez17PPox5SMO2uRolz5N-CvOB2xiGuPksx7it3f_G12wPejce1zmlPXCJffX6CLoofibE1fobfv4utnV-5en583Dvra05XPNKZech0aBMk4ZS6izDYCwpjXME65BcBMkQGO8A0aNChRaYZx02ilv2Ard_f3anErJPnSfOY46Hzsg3a-VDrqTFfYDlZJWDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Miura, Atsushi ; Uraoka, Yukiharu ; Fuyuki, Takashi ; Yoshii, Shigeo ; Yamashita, Ichiro</creator><creatorcontrib>Miura, Atsushi ; Uraoka, Yukiharu ; Fuyuki, Takashi ; Yoshii, Shigeo ; Yamashita, Ichiro</creatorcontrib><description>We have demonstrated floating nanodot gate memory (FNGM) fabrication by utilizing uniform biomineralized cobalt oxide (Co3O4) nanodots (Co-BNDs) which are biochemically synthesized in the vacant cavity of supramolecular protein, ferritin. High-density Co-BND array (>6.5×1011cm−2) formed on Si substrate with 3-nm-thick tunnel SiO2 is embedded in metal-oxide-semiconductor (MOS) stacked structure and used as the floating gate of FNGM. Fabricated Co-BND MOS capacitors and metal-oxide-semiconductor field effect transistors show the hysteresis loop due to the electron and hole confinement in the embedded Co-BND. Fabricated MOS memories show wide memory window size of 3–4V under 10V operation, good charge retention characteristics until 104s after charge programming, and stress endurance until 105 write/erase operation. Observed charge injection thresholds suggest that charge injection through the direct tunneling from Si to the energy levels in the conduction and valence bands of Co3O4 and long charge retention characteristics implies prompt charge confinement to the deeper energy level of metal Co which is formed during the annealing in the device processing.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.2888357</identifier><language>eng</language><ispartof>Journal of applied physics, 2008-04, Vol.103 (7)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-424844f5919bd9bc02dc5117cb6b3e04a174bf8115bed132b9f2167bd8dad9eb3</citedby><cites>FETCH-LOGICAL-c264t-424844f5919bd9bc02dc5117cb6b3e04a174bf8115bed132b9f2167bd8dad9eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Miura, Atsushi</creatorcontrib><creatorcontrib>Uraoka, Yukiharu</creatorcontrib><creatorcontrib>Fuyuki, Takashi</creatorcontrib><creatorcontrib>Yoshii, Shigeo</creatorcontrib><creatorcontrib>Yamashita, Ichiro</creatorcontrib><title>Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node</title><title>Journal of applied physics</title><description>We have demonstrated floating nanodot gate memory (FNGM) fabrication by utilizing uniform biomineralized cobalt oxide (Co3O4) nanodots (Co-BNDs) which are biochemically synthesized in the vacant cavity of supramolecular protein, ferritin. High-density Co-BND array (>6.5×1011cm−2) formed on Si substrate with 3-nm-thick tunnel SiO2 is embedded in metal-oxide-semiconductor (MOS) stacked structure and used as the floating gate of FNGM. Fabricated Co-BND MOS capacitors and metal-oxide-semiconductor field effect transistors show the hysteresis loop due to the electron and hole confinement in the embedded Co-BND. Fabricated MOS memories show wide memory window size of 3–4V under 10V operation, good charge retention characteristics until 104s after charge programming, and stress endurance until 105 write/erase operation. Observed charge injection thresholds suggest that charge injection through the direct tunneling from Si to the energy levels in the conduction and valence bands of Co3O4 and long charge retention characteristics implies prompt charge confinement to the deeper energy level of metal Co which is formed during the annealing in the device processing.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KxDAYRYMoWEcXvkG2LjrmS9ImWcrgOMKAG125KPntRNpGkoKMT2_FwdWBe7l3cRC6BbIG0rJ7WFMpJWvEGaqASFWLpiHnqCKEQi2VUJfoqpQPQgAkUxV63w5Jz3Hq8aSn5NKMez17PPox5SMO2uRolz5N-CvOB2xiGuPksx7it3f_G12wPejce1zmlPXCJffX6CLoofibE1fobfv4utnV-5en583Dvra05XPNKZech0aBMk4ZS6izDYCwpjXME65BcBMkQGO8A0aNChRaYZx02ilv2Ard_f3anErJPnSfOY46Hzsg3a-VDrqTFfYDlZJWDQ</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Miura, Atsushi</creator><creator>Uraoka, Yukiharu</creator><creator>Fuyuki, Takashi</creator><creator>Yoshii, Shigeo</creator><creator>Yamashita, Ichiro</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080401</creationdate><title>Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node</title><author>Miura, Atsushi ; Uraoka, Yukiharu ; Fuyuki, Takashi ; Yoshii, Shigeo ; Yamashita, Ichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-424844f5919bd9bc02dc5117cb6b3e04a174bf8115bed132b9f2167bd8dad9eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miura, Atsushi</creatorcontrib><creatorcontrib>Uraoka, Yukiharu</creatorcontrib><creatorcontrib>Fuyuki, Takashi</creatorcontrib><creatorcontrib>Yoshii, Shigeo</creatorcontrib><creatorcontrib>Yamashita, Ichiro</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miura, Atsushi</au><au>Uraoka, Yukiharu</au><au>Fuyuki, Takashi</au><au>Yoshii, Shigeo</au><au>Yamashita, Ichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node</atitle><jtitle>Journal of applied physics</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>103</volume><issue>7</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We have demonstrated floating nanodot gate memory (FNGM) fabrication by utilizing uniform biomineralized cobalt oxide (Co3O4) nanodots (Co-BNDs) which are biochemically synthesized in the vacant cavity of supramolecular protein, ferritin. High-density Co-BND array (>6.5×1011cm−2) formed on Si substrate with 3-nm-thick tunnel SiO2 is embedded in metal-oxide-semiconductor (MOS) stacked structure and used as the floating gate of FNGM. Fabricated Co-BND MOS capacitors and metal-oxide-semiconductor field effect transistors show the hysteresis loop due to the electron and hole confinement in the embedded Co-BND. Fabricated MOS memories show wide memory window size of 3–4V under 10V operation, good charge retention characteristics until 104s after charge programming, and stress endurance until 105 write/erase operation. Observed charge injection thresholds suggest that charge injection through the direct tunneling from Si to the energy levels in the conduction and valence bands of Co3O4 and long charge retention characteristics implies prompt charge confinement to the deeper energy level of metal Co which is formed during the annealing in the device processing.</abstract><doi>10.1063/1.2888357</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2008-04, Vol.103 (7) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_2888357 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
title | Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Floating%20nanodot%20gate%20memory%20fabrication%20with%20biomineralized%20nanodot%20as%20charge%20storage%20node&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Miura,%20Atsushi&rft.date=2008-04-01&rft.volume=103&rft.issue=7&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.2888357&rft_dat=%3Ccrossref%3E10_1063_1_2888357%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |