Glide and multiplication of basal plane dislocations during 4H-SiC homoepitaxy

Basal plane dislocations (BPDs) are an important category of extended defects in SiC epilayers. They act as nucleation sites for single layer Shockley-type stacking faults which account for the degradation of the bipolar devices operating under forward bias. It is well documented that most of the BP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2007-11, Vol.102 (9)
Hauptverfasser: Zhang, X., Skowronski, M., Liu, K. X., Stahlbush, R. E., Sumakeris, J. J., Paisley, M. J., O’Loughlin, M. J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Journal of applied physics
container_volume 102
creator Zhang, X.
Skowronski, M.
Liu, K. X.
Stahlbush, R. E.
Sumakeris, J. J.
Paisley, M. J.
O’Loughlin, M. J.
description Basal plane dislocations (BPDs) are an important category of extended defects in SiC epilayers. They act as nucleation sites for single layer Shockley-type stacking faults which account for the degradation of the bipolar devices operating under forward bias. It is well documented that most of the BPDs in the SiC epilayers propagate from the substrates. However, two characteristic types of BPDs were suggested to be due to either nucleation or multiplication during epitaxy, including interfacial dislocations and short BPD arrays connected to the epilayer surface by threading segments. Combining molten KOH etching, plan-view transmission x-ray topography, and photoluminescence mapping, both types are determined to be two parts of one defect produced by the sideway glide of a BPD under the influence of shear stress. During the glide, the down-step end of the BPD frequently produces a series of short BPD segments at the moving growth front. These BPD segments will grow into an array of dislocation half loops. At the same time, the sideway glide of the BPD in the epilayer leaves an edge-type BPD segment at the epilayer∕substrate interface, which is the interfacial dislocation. The defect morphology provides the evidence of significant level of shear stresses present in SiC homoepitaxy of typical power device structures. The magnitude of such stresses is estimated.
doi_str_mv 10.1063/1.2809343
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2809343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_2809343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-fc2b8976e81a662ac95c3eef0cf5dce7ee71e7b17ae1689b22868190212f16603</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoOFYXvkG2LlLzJZ38LGXQVii6UNdDJvNFI5kfJlOwb29Lu7qLC5dzDyH3wJfAlXyEpTDcypW8IAVwY5kuS35JCs4FMGO1vSY3Of9yDmCkLcjbOsUWqetb2u3SHMcUvZvj0NMh0MZll-iYXI-0jTkNpyrTdjfF_puuNuwjVvRn6AYc4-z-9rfkKriU8e6cC_L18vxZbdj2ff1aPW2ZF7acWfCiOcAoNOCUEs7b0kvEwH0oW48aUQPqBrRDUMY2QhhlwB4-iABKcbkgD6ddPw05TxjqcYqdm_Y18Poooob6LEL-AxlHUBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Glide and multiplication of basal plane dislocations during 4H-SiC homoepitaxy</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Zhang, X. ; Skowronski, M. ; Liu, K. X. ; Stahlbush, R. E. ; Sumakeris, J. J. ; Paisley, M. J. ; O’Loughlin, M. J.</creator><creatorcontrib>Zhang, X. ; Skowronski, M. ; Liu, K. X. ; Stahlbush, R. E. ; Sumakeris, J. J. ; Paisley, M. J. ; O’Loughlin, M. J.</creatorcontrib><description>Basal plane dislocations (BPDs) are an important category of extended defects in SiC epilayers. They act as nucleation sites for single layer Shockley-type stacking faults which account for the degradation of the bipolar devices operating under forward bias. It is well documented that most of the BPDs in the SiC epilayers propagate from the substrates. However, two characteristic types of BPDs were suggested to be due to either nucleation or multiplication during epitaxy, including interfacial dislocations and short BPD arrays connected to the epilayer surface by threading segments. Combining molten KOH etching, plan-view transmission x-ray topography, and photoluminescence mapping, both types are determined to be two parts of one defect produced by the sideway glide of a BPD under the influence of shear stress. During the glide, the down-step end of the BPD frequently produces a series of short BPD segments at the moving growth front. These BPD segments will grow into an array of dislocation half loops. At the same time, the sideway glide of the BPD in the epilayer leaves an edge-type BPD segment at the epilayer∕substrate interface, which is the interfacial dislocation. The defect morphology provides the evidence of significant level of shear stresses present in SiC homoepitaxy of typical power device structures. The magnitude of such stresses is estimated.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.2809343</identifier><language>eng</language><ispartof>Journal of applied physics, 2007-11, Vol.102 (9)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-fc2b8976e81a662ac95c3eef0cf5dce7ee71e7b17ae1689b22868190212f16603</citedby><cites>FETCH-LOGICAL-c295t-fc2b8976e81a662ac95c3eef0cf5dce7ee71e7b17ae1689b22868190212f16603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Skowronski, M.</creatorcontrib><creatorcontrib>Liu, K. X.</creatorcontrib><creatorcontrib>Stahlbush, R. E.</creatorcontrib><creatorcontrib>Sumakeris, J. J.</creatorcontrib><creatorcontrib>Paisley, M. J.</creatorcontrib><creatorcontrib>O’Loughlin, M. J.</creatorcontrib><title>Glide and multiplication of basal plane dislocations during 4H-SiC homoepitaxy</title><title>Journal of applied physics</title><description>Basal plane dislocations (BPDs) are an important category of extended defects in SiC epilayers. They act as nucleation sites for single layer Shockley-type stacking faults which account for the degradation of the bipolar devices operating under forward bias. It is well documented that most of the BPDs in the SiC epilayers propagate from the substrates. However, two characteristic types of BPDs were suggested to be due to either nucleation or multiplication during epitaxy, including interfacial dislocations and short BPD arrays connected to the epilayer surface by threading segments. Combining molten KOH etching, plan-view transmission x-ray topography, and photoluminescence mapping, both types are determined to be two parts of one defect produced by the sideway glide of a BPD under the influence of shear stress. During the glide, the down-step end of the BPD frequently produces a series of short BPD segments at the moving growth front. These BPD segments will grow into an array of dislocation half loops. At the same time, the sideway glide of the BPD in the epilayer leaves an edge-type BPD segment at the epilayer∕substrate interface, which is the interfacial dislocation. The defect morphology provides the evidence of significant level of shear stresses present in SiC homoepitaxy of typical power device structures. The magnitude of such stresses is estimated.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEYRYMoOFYXvkG2LlLzJZ38LGXQVii6UNdDJvNFI5kfJlOwb29Lu7qLC5dzDyH3wJfAlXyEpTDcypW8IAVwY5kuS35JCs4FMGO1vSY3Of9yDmCkLcjbOsUWqetb2u3SHMcUvZvj0NMh0MZll-iYXI-0jTkNpyrTdjfF_puuNuwjVvRn6AYc4-z-9rfkKriU8e6cC_L18vxZbdj2ff1aPW2ZF7acWfCiOcAoNOCUEs7b0kvEwH0oW48aUQPqBrRDUMY2QhhlwB4-iABKcbkgD6ddPw05TxjqcYqdm_Y18Poooob6LEL-AxlHUBE</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Zhang, X.</creator><creator>Skowronski, M.</creator><creator>Liu, K. X.</creator><creator>Stahlbush, R. E.</creator><creator>Sumakeris, J. J.</creator><creator>Paisley, M. J.</creator><creator>O’Loughlin, M. J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20071101</creationdate><title>Glide and multiplication of basal plane dislocations during 4H-SiC homoepitaxy</title><author>Zhang, X. ; Skowronski, M. ; Liu, K. X. ; Stahlbush, R. E. ; Sumakeris, J. J. ; Paisley, M. J. ; O’Loughlin, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-fc2b8976e81a662ac95c3eef0cf5dce7ee71e7b17ae1689b22868190212f16603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Skowronski, M.</creatorcontrib><creatorcontrib>Liu, K. X.</creatorcontrib><creatorcontrib>Stahlbush, R. E.</creatorcontrib><creatorcontrib>Sumakeris, J. J.</creatorcontrib><creatorcontrib>Paisley, M. J.</creatorcontrib><creatorcontrib>O’Loughlin, M. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, X.</au><au>Skowronski, M.</au><au>Liu, K. X.</au><au>Stahlbush, R. E.</au><au>Sumakeris, J. J.</au><au>Paisley, M. J.</au><au>O’Loughlin, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glide and multiplication of basal plane dislocations during 4H-SiC homoepitaxy</atitle><jtitle>Journal of applied physics</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>102</volume><issue>9</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Basal plane dislocations (BPDs) are an important category of extended defects in SiC epilayers. They act as nucleation sites for single layer Shockley-type stacking faults which account for the degradation of the bipolar devices operating under forward bias. It is well documented that most of the BPDs in the SiC epilayers propagate from the substrates. However, two characteristic types of BPDs were suggested to be due to either nucleation or multiplication during epitaxy, including interfacial dislocations and short BPD arrays connected to the epilayer surface by threading segments. Combining molten KOH etching, plan-view transmission x-ray topography, and photoluminescence mapping, both types are determined to be two parts of one defect produced by the sideway glide of a BPD under the influence of shear stress. During the glide, the down-step end of the BPD frequently produces a series of short BPD segments at the moving growth front. These BPD segments will grow into an array of dislocation half loops. At the same time, the sideway glide of the BPD in the epilayer leaves an edge-type BPD segment at the epilayer∕substrate interface, which is the interfacial dislocation. The defect morphology provides the evidence of significant level of shear stresses present in SiC homoepitaxy of typical power device structures. The magnitude of such stresses is estimated.</abstract><doi>10.1063/1.2809343</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2007-11, Vol.102 (9)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_2809343
source AIP Journals Complete; AIP Digital Archive
title Glide and multiplication of basal plane dislocations during 4H-SiC homoepitaxy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glide%20and%20multiplication%20of%20basal%20plane%20dislocations%20during%204H-SiC%20homoepitaxy&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Zhang,%20X.&rft.date=2007-11-01&rft.volume=102&rft.issue=9&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.2809343&rft_dat=%3Ccrossref%3E10_1063_1_2809343%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true