Weibel instability with semirelativistic Maxwellian distribution function

A macroscopic description of the linear Weibel instability, based on semirelativistic distribution in an unmagnetized plasma is presented. In particular, analytical expressions are derived for the real and imaginary parts of the dielectric constant for the Maxwellian and semirelativistic Maxwellian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2007-07, Vol.14 (7), p.072106-072106-3
Hauptverfasser: Zaheer, S., Murtaza, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 072106-3
container_issue 7
container_start_page 072106
container_title Physics of plasmas
container_volume 14
creator Zaheer, S.
Murtaza, G.
description A macroscopic description of the linear Weibel instability, based on semirelativistic distribution in an unmagnetized plasma is presented. In particular, analytical expressions are derived for the real and imaginary parts of the dielectric constant for the Maxwellian and semirelativistic Maxwellian distribution functions under the conditions of ξ = ω k ‖ θ ‖ ≫ 1 and ≪ 1 . The real frequency and the growth rate of the instability for the semirelativistic case now depends upon the factor χ generated from the relativistic term in the distribution function. The presence of χ which is always greater than unity favors the Weibel instability to occur even for the small anisotropy of temperature. As we increase the value of χ large enough that it dominates over other terms, the damping changes into growth. In the limiting case, i.e., χ = 1 , the results approach the Maxwellian situation.
doi_str_mv 10.1063/1.2749254
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2749254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-69c398361ab07433d01911f9a2457650f7181a3108e97446b4d7d7136c8c24cb3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcPfoOCTwqduUmaNC-CDP8MFF8UfQtpmrJI144k29y3t6UDBZlP93D53cO5B6FzwBPAnF7DhAgmScYO0AhwLlPBBTvstcAp5-zjGJ2E8IkxZjzLR2j2bl1h68Q1IerC1S5uk42L8yTYhfO21tGtXYjOJM_6a2Pr2ukmKbuNd8UqurZJqlVjenGKjipdB3u2m2P0dn_3On1Mn14eZtPbp9TQnMSUS0NlTjnoAgtGaYlBAlRSE5YJnuFKQA6adtmtFIzxgpWiFEC5yQ1hpqBjdDH4tl0sFYyL1sxN2zTWREWwFJwT6KjLgTK-DcHbSi29W2i_VYBV35QCtWuqY28GtjfT_S_74aEu9asutekMrvYZrFv_c6yWZfUf_DfaN9aBjH8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weibel instability with semirelativistic Maxwellian distribution function</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Zaheer, S. ; Murtaza, G.</creator><creatorcontrib>Zaheer, S. ; Murtaza, G.</creatorcontrib><description>A macroscopic description of the linear Weibel instability, based on semirelativistic distribution in an unmagnetized plasma is presented. In particular, analytical expressions are derived for the real and imaginary parts of the dielectric constant for the Maxwellian and semirelativistic Maxwellian distribution functions under the conditions of ξ = ω k ‖ θ ‖ ≫ 1 and ≪ 1 . The real frequency and the growth rate of the instability for the semirelativistic case now depends upon the factor χ generated from the relativistic term in the distribution function. The presence of χ which is always greater than unity favors the Weibel instability to occur even for the small anisotropy of temperature. As we increase the value of χ large enough that it dominates over other terms, the damping changes into growth. In the limiting case, i.e., χ = 1 , the results approach the Maxwellian situation.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.2749254</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ANISOTROPY ; BOLTZMANN-VLASOV EQUATION ; DAMPING ; DISTRIBUTION FUNCTIONS ; MAXWELL EQUATIONS ; PERMITTIVITY ; PLASMA INSTABILITY ; RELATIVISTIC PLASMA ; RELATIVISTIC RANGE</subject><ispartof>Physics of plasmas, 2007-07, Vol.14 (7), p.072106-072106-3</ispartof><rights>American Institute of Physics</rights><rights>2007 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-69c398361ab07433d01911f9a2457650f7181a3108e97446b4d7d7136c8c24cb3</citedby><cites>FETCH-LOGICAL-c382t-69c398361ab07433d01911f9a2457650f7181a3108e97446b4d7d7136c8c24cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.2749254$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4498,27903,27904,76130,76136</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20976621$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaheer, S.</creatorcontrib><creatorcontrib>Murtaza, G.</creatorcontrib><title>Weibel instability with semirelativistic Maxwellian distribution function</title><title>Physics of plasmas</title><description>A macroscopic description of the linear Weibel instability, based on semirelativistic distribution in an unmagnetized plasma is presented. In particular, analytical expressions are derived for the real and imaginary parts of the dielectric constant for the Maxwellian and semirelativistic Maxwellian distribution functions under the conditions of ξ = ω k ‖ θ ‖ ≫ 1 and ≪ 1 . The real frequency and the growth rate of the instability for the semirelativistic case now depends upon the factor χ generated from the relativistic term in the distribution function. The presence of χ which is always greater than unity favors the Weibel instability to occur even for the small anisotropy of temperature. As we increase the value of χ large enough that it dominates over other terms, the damping changes into growth. In the limiting case, i.e., χ = 1 , the results approach the Maxwellian situation.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ANISOTROPY</subject><subject>BOLTZMANN-VLASOV EQUATION</subject><subject>DAMPING</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>MAXWELL EQUATIONS</subject><subject>PERMITTIVITY</subject><subject>PLASMA INSTABILITY</subject><subject>RELATIVISTIC PLASMA</subject><subject>RELATIVISTIC RANGE</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKcPfoOCTwqduUmaNC-CDP8MFF8UfQtpmrJI144k29y3t6UDBZlP93D53cO5B6FzwBPAnF7DhAgmScYO0AhwLlPBBTvstcAp5-zjGJ2E8IkxZjzLR2j2bl1h68Q1IerC1S5uk42L8yTYhfO21tGtXYjOJM_6a2Pr2ukmKbuNd8UqurZJqlVjenGKjipdB3u2m2P0dn_3On1Mn14eZtPbp9TQnMSUS0NlTjnoAgtGaYlBAlRSE5YJnuFKQA6adtmtFIzxgpWiFEC5yQ1hpqBjdDH4tl0sFYyL1sxN2zTWREWwFJwT6KjLgTK-DcHbSi29W2i_VYBV35QCtWuqY28GtjfT_S_74aEu9asutekMrvYZrFv_c6yWZfUf_DfaN9aBjH8</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Zaheer, S.</creator><creator>Murtaza, G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20070701</creationdate><title>Weibel instability with semirelativistic Maxwellian distribution function</title><author>Zaheer, S. ; Murtaza, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-69c398361ab07433d01911f9a2457650f7181a3108e97446b4d7d7136c8c24cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ANISOTROPY</topic><topic>BOLTZMANN-VLASOV EQUATION</topic><topic>DAMPING</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>MAXWELL EQUATIONS</topic><topic>PERMITTIVITY</topic><topic>PLASMA INSTABILITY</topic><topic>RELATIVISTIC PLASMA</topic><topic>RELATIVISTIC RANGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaheer, S.</creatorcontrib><creatorcontrib>Murtaza, G.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaheer, S.</au><au>Murtaza, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weibel instability with semirelativistic Maxwellian distribution function</atitle><jtitle>Physics of plasmas</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>14</volume><issue>7</issue><spage>072106</spage><epage>072106-3</epage><pages>072106-072106-3</pages><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A macroscopic description of the linear Weibel instability, based on semirelativistic distribution in an unmagnetized plasma is presented. In particular, analytical expressions are derived for the real and imaginary parts of the dielectric constant for the Maxwellian and semirelativistic Maxwellian distribution functions under the conditions of ξ = ω k ‖ θ ‖ ≫ 1 and ≪ 1 . The real frequency and the growth rate of the instability for the semirelativistic case now depends upon the factor χ generated from the relativistic term in the distribution function. The presence of χ which is always greater than unity favors the Weibel instability to occur even for the small anisotropy of temperature. As we increase the value of χ large enough that it dominates over other terms, the damping changes into growth. In the limiting case, i.e., χ = 1 , the results approach the Maxwellian situation.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2749254</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2007-07, Vol.14 (7), p.072106-072106-3
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_1_2749254
source AIP Journals Complete; AIP Digital Archive
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
ANISOTROPY
BOLTZMANN-VLASOV EQUATION
DAMPING
DISTRIBUTION FUNCTIONS
MAXWELL EQUATIONS
PERMITTIVITY
PLASMA INSTABILITY
RELATIVISTIC PLASMA
RELATIVISTIC RANGE
title Weibel instability with semirelativistic Maxwellian distribution function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weibel%20instability%20with%20semirelativistic%20Maxwellian%20distribution%20function&rft.jtitle=Physics%20of%20plasmas&rft.au=Zaheer,%20S.&rft.date=2007-07-01&rft.volume=14&rft.issue=7&rft.spage=072106&rft.epage=072106-3&rft.pages=072106-072106-3&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.2749254&rft_dat=%3Cscitation_cross%3Epop%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true