Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays
Extreme water repellency is greatly desired for anticontamination and self-cleaning applications. Aligned multiwalled carbon nanotube arrays exhibit superhydrophobic behavior but suffer from poor hydrophobic stability and contact angle hysteresis. In this work the authors selectively grow multiwalle...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2007-04, Vol.90 (14), p.143117-143117-3 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143117-3 |
---|---|
container_issue | 14 |
container_start_page | 143117 |
container_title | Applied physics letters |
container_volume | 90 |
creator | Wang, Z. Koratkar, N. Ci, L. Ajayan, P. M. |
description | Extreme water repellency is greatly desired for anticontamination and self-cleaning applications. Aligned multiwalled carbon nanotube arrays exhibit superhydrophobic behavior but suffer from poor hydrophobic stability and contact angle hysteresis. In this work the authors selectively grow multiwalled nanotubes onto a patterned substrate and engineer a novel high aspect ratio architecture which combines a micro- and a nano-scale roughness structure. While there is no significant difference in the static contact angle of the patterned and uniform nanotube arrays, dynamic measurements indicate a dramatic increase in hydrophobic stability for the patterned array caused by entrapped air pockets which prevent Cassie to Wenzel state transition. |
doi_str_mv | 10.1063/1.2720761 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2720761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3cae22c161c97063f8328fa84197ac63586429f736acf5a58594c6ccd2f467ad3</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqUw8AZeGdL6J7GTgQFVUJAqscBs3dzYxKi1Kzsd8vaktIxMV1c6-qRzCLnnbMGZkku-EFowrfgFmXGmdSE5ry_JjDEmC9VU_Jrc5Pw9vZWQckb6Vdy1PtiO7jymWCwDhJgRtpbmQ3KAlqZ4-OqDzZm6mKgNPQSc-H7sUtz3sfVI8wCt3_phpD5QhNTGQI9Dw6G1FFKCMd-SKwfbbO_Od04-X54_Vq_F5n39tnraFCjLZigkghUCueLY6EnI1VLUDuqSNxpQyapWpWiclgrQVVDVVVOiQuyEK5WGTs7Jw2l3ssk5WWf2ye8gjYYzc0xkuDknmtjHE5vRDzD4GP6H_zqZ307maCd_ALN-b20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Wang, Z. ; Koratkar, N. ; Ci, L. ; Ajayan, P. M.</creator><creatorcontrib>Wang, Z. ; Koratkar, N. ; Ci, L. ; Ajayan, P. M.</creatorcontrib><description>Extreme water repellency is greatly desired for anticontamination and self-cleaning applications. Aligned multiwalled carbon nanotube arrays exhibit superhydrophobic behavior but suffer from poor hydrophobic stability and contact angle hysteresis. In this work the authors selectively grow multiwalled nanotubes onto a patterned substrate and engineer a novel high aspect ratio architecture which combines a micro- and a nano-scale roughness structure. While there is no significant difference in the static contact angle of the patterned and uniform nanotube arrays, dynamic measurements indicate a dramatic increase in hydrophobic stability for the patterned array caused by entrapped air pockets which prevent Cassie to Wenzel state transition.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.2720761</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2007-04, Vol.90 (14), p.143117-143117-3</ispartof><rights>2007 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-3cae22c161c97063f8328fa84197ac63586429f736acf5a58594c6ccd2f467ad3</citedby><cites>FETCH-LOGICAL-c349t-3cae22c161c97063f8328fa84197ac63586429f736acf5a58594c6ccd2f467ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.2720761$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Koratkar, N.</creatorcontrib><creatorcontrib>Ci, L.</creatorcontrib><creatorcontrib>Ajayan, P. M.</creatorcontrib><title>Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays</title><title>Applied physics letters</title><description>Extreme water repellency is greatly desired for anticontamination and self-cleaning applications. Aligned multiwalled carbon nanotube arrays exhibit superhydrophobic behavior but suffer from poor hydrophobic stability and contact angle hysteresis. In this work the authors selectively grow multiwalled nanotubes onto a patterned substrate and engineer a novel high aspect ratio architecture which combines a micro- and a nano-scale roughness structure. While there is no significant difference in the static contact angle of the patterned and uniform nanotube arrays, dynamic measurements indicate a dramatic increase in hydrophobic stability for the patterned array caused by entrapped air pockets which prevent Cassie to Wenzel state transition.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EEqUw8AZeGdL6J7GTgQFVUJAqscBs3dzYxKi1Kzsd8vaktIxMV1c6-qRzCLnnbMGZkku-EFowrfgFmXGmdSE5ry_JjDEmC9VU_Jrc5Pw9vZWQckb6Vdy1PtiO7jymWCwDhJgRtpbmQ3KAlqZ4-OqDzZm6mKgNPQSc-H7sUtz3sfVI8wCt3_phpD5QhNTGQI9Dw6G1FFKCMd-SKwfbbO_Od04-X54_Vq_F5n39tnraFCjLZigkghUCueLY6EnI1VLUDuqSNxpQyapWpWiclgrQVVDVVVOiQuyEK5WGTs7Jw2l3ssk5WWf2ye8gjYYzc0xkuDknmtjHE5vRDzD4GP6H_zqZ307maCd_ALN-b20</recordid><startdate>20070402</startdate><enddate>20070402</enddate><creator>Wang, Z.</creator><creator>Koratkar, N.</creator><creator>Ci, L.</creator><creator>Ajayan, P. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070402</creationdate><title>Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays</title><author>Wang, Z. ; Koratkar, N. ; Ci, L. ; Ajayan, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3cae22c161c97063f8328fa84197ac63586429f736acf5a58594c6ccd2f467ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Koratkar, N.</creatorcontrib><creatorcontrib>Ci, L.</creatorcontrib><creatorcontrib>Ajayan, P. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Z.</au><au>Koratkar, N.</au><au>Ci, L.</au><au>Ajayan, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays</atitle><jtitle>Applied physics letters</jtitle><date>2007-04-02</date><risdate>2007</risdate><volume>90</volume><issue>14</issue><spage>143117</spage><epage>143117-3</epage><pages>143117-143117-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Extreme water repellency is greatly desired for anticontamination and self-cleaning applications. Aligned multiwalled carbon nanotube arrays exhibit superhydrophobic behavior but suffer from poor hydrophobic stability and contact angle hysteresis. In this work the authors selectively grow multiwalled nanotubes onto a patterned substrate and engineer a novel high aspect ratio architecture which combines a micro- and a nano-scale roughness structure. While there is no significant difference in the static contact angle of the patterned and uniform nanotube arrays, dynamic measurements indicate a dramatic increase in hydrophobic stability for the patterned array caused by entrapped air pockets which prevent Cassie to Wenzel state transition.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2720761</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2007-04, Vol.90 (14), p.143117-143117-3 |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_2720761 |
source | AIP Journals Complete; AIP Digital Archive |
title | Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20micro-/nanoscale%20surface%20roughness%20for%20enhanced%20hydrophobic%20stability%20in%20carbon%20nanotube%20arrays&rft.jtitle=Applied%20physics%20letters&rft.au=Wang,%20Z.&rft.date=2007-04-02&rft.volume=90&rft.issue=14&rft.spage=143117&rft.epage=143117-3&rft.pages=143117-143117-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.2720761&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |