Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays

Extreme water repellency is greatly desired for anticontamination and self-cleaning applications. Aligned multiwalled carbon nanotube arrays exhibit superhydrophobic behavior but suffer from poor hydrophobic stability and contact angle hysteresis. In this work the authors selectively grow multiwalle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2007-04, Vol.90 (14), p.143117-143117-3
Hauptverfasser: Wang, Z., Koratkar, N., Ci, L., Ajayan, P. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143117-3
container_issue 14
container_start_page 143117
container_title Applied physics letters
container_volume 90
creator Wang, Z.
Koratkar, N.
Ci, L.
Ajayan, P. M.
description Extreme water repellency is greatly desired for anticontamination and self-cleaning applications. Aligned multiwalled carbon nanotube arrays exhibit superhydrophobic behavior but suffer from poor hydrophobic stability and contact angle hysteresis. In this work the authors selectively grow multiwalled nanotubes onto a patterned substrate and engineer a novel high aspect ratio architecture which combines a micro- and a nano-scale roughness structure. While there is no significant difference in the static contact angle of the patterned and uniform nanotube arrays, dynamic measurements indicate a dramatic increase in hydrophobic stability for the patterned array caused by entrapped air pockets which prevent Cassie to Wenzel state transition.
doi_str_mv 10.1063/1.2720761
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2720761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3cae22c161c97063f8328fa84197ac63586429f736acf5a58594c6ccd2f467ad3</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqUw8AZeGdL6J7GTgQFVUJAqscBs3dzYxKi1Kzsd8vaktIxMV1c6-qRzCLnnbMGZkku-EFowrfgFmXGmdSE5ry_JjDEmC9VU_Jrc5Pw9vZWQckb6Vdy1PtiO7jymWCwDhJgRtpbmQ3KAlqZ4-OqDzZm6mKgNPQSc-H7sUtz3sfVI8wCt3_phpD5QhNTGQI9Dw6G1FFKCMd-SKwfbbO_Od04-X54_Vq_F5n39tnraFCjLZigkghUCueLY6EnI1VLUDuqSNxpQyapWpWiclgrQVVDVVVOiQuyEK5WGTs7Jw2l3ssk5WWf2ye8gjYYzc0xkuDknmtjHE5vRDzD4GP6H_zqZ307maCd_ALN-b20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Wang, Z. ; Koratkar, N. ; Ci, L. ; Ajayan, P. M.</creator><creatorcontrib>Wang, Z. ; Koratkar, N. ; Ci, L. ; Ajayan, P. M.</creatorcontrib><description>Extreme water repellency is greatly desired for anticontamination and self-cleaning applications. Aligned multiwalled carbon nanotube arrays exhibit superhydrophobic behavior but suffer from poor hydrophobic stability and contact angle hysteresis. In this work the authors selectively grow multiwalled nanotubes onto a patterned substrate and engineer a novel high aspect ratio architecture which combines a micro- and a nano-scale roughness structure. While there is no significant difference in the static contact angle of the patterned and uniform nanotube arrays, dynamic measurements indicate a dramatic increase in hydrophobic stability for the patterned array caused by entrapped air pockets which prevent Cassie to Wenzel state transition.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.2720761</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2007-04, Vol.90 (14), p.143117-143117-3</ispartof><rights>2007 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-3cae22c161c97063f8328fa84197ac63586429f736acf5a58594c6ccd2f467ad3</citedby><cites>FETCH-LOGICAL-c349t-3cae22c161c97063f8328fa84197ac63586429f736acf5a58594c6ccd2f467ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.2720761$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Koratkar, N.</creatorcontrib><creatorcontrib>Ci, L.</creatorcontrib><creatorcontrib>Ajayan, P. M.</creatorcontrib><title>Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays</title><title>Applied physics letters</title><description>Extreme water repellency is greatly desired for anticontamination and self-cleaning applications. Aligned multiwalled carbon nanotube arrays exhibit superhydrophobic behavior but suffer from poor hydrophobic stability and contact angle hysteresis. In this work the authors selectively grow multiwalled nanotubes onto a patterned substrate and engineer a novel high aspect ratio architecture which combines a micro- and a nano-scale roughness structure. While there is no significant difference in the static contact angle of the patterned and uniform nanotube arrays, dynamic measurements indicate a dramatic increase in hydrophobic stability for the patterned array caused by entrapped air pockets which prevent Cassie to Wenzel state transition.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EEqUw8AZeGdL6J7GTgQFVUJAqscBs3dzYxKi1Kzsd8vaktIxMV1c6-qRzCLnnbMGZkku-EFowrfgFmXGmdSE5ry_JjDEmC9VU_Jrc5Pw9vZWQckb6Vdy1PtiO7jymWCwDhJgRtpbmQ3KAlqZ4-OqDzZm6mKgNPQSc-H7sUtz3sfVI8wCt3_phpD5QhNTGQI9Dw6G1FFKCMd-SKwfbbO_Od04-X54_Vq_F5n39tnraFCjLZigkghUCueLY6EnI1VLUDuqSNxpQyapWpWiclgrQVVDVVVOiQuyEK5WGTs7Jw2l3ssk5WWf2ye8gjYYzc0xkuDknmtjHE5vRDzD4GP6H_zqZ307maCd_ALN-b20</recordid><startdate>20070402</startdate><enddate>20070402</enddate><creator>Wang, Z.</creator><creator>Koratkar, N.</creator><creator>Ci, L.</creator><creator>Ajayan, P. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070402</creationdate><title>Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays</title><author>Wang, Z. ; Koratkar, N. ; Ci, L. ; Ajayan, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3cae22c161c97063f8328fa84197ac63586429f736acf5a58594c6ccd2f467ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Koratkar, N.</creatorcontrib><creatorcontrib>Ci, L.</creatorcontrib><creatorcontrib>Ajayan, P. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Z.</au><au>Koratkar, N.</au><au>Ci, L.</au><au>Ajayan, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays</atitle><jtitle>Applied physics letters</jtitle><date>2007-04-02</date><risdate>2007</risdate><volume>90</volume><issue>14</issue><spage>143117</spage><epage>143117-3</epage><pages>143117-143117-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Extreme water repellency is greatly desired for anticontamination and self-cleaning applications. Aligned multiwalled carbon nanotube arrays exhibit superhydrophobic behavior but suffer from poor hydrophobic stability and contact angle hysteresis. In this work the authors selectively grow multiwalled nanotubes onto a patterned substrate and engineer a novel high aspect ratio architecture which combines a micro- and a nano-scale roughness structure. While there is no significant difference in the static contact angle of the patterned and uniform nanotube arrays, dynamic measurements indicate a dramatic increase in hydrophobic stability for the patterned array caused by entrapped air pockets which prevent Cassie to Wenzel state transition.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2720761</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2007-04, Vol.90 (14), p.143117-143117-3
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_2720761
source AIP Journals Complete; AIP Digital Archive
title Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20micro-/nanoscale%20surface%20roughness%20for%20enhanced%20hydrophobic%20stability%20in%20carbon%20nanotube%20arrays&rft.jtitle=Applied%20physics%20letters&rft.au=Wang,%20Z.&rft.date=2007-04-02&rft.volume=90&rft.issue=14&rft.spage=143117&rft.epage=143117-3&rft.pages=143117-143117-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.2720761&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true