Suitability of lithium doped electron injection layers for organic semiconductor lasers

Lithium doped 2 , 2 ′ , 2 ″ -(1,3,5-benzenetryl)tris(1-phenyl)- 1 H -benzimidazol (TPBi) as electron injection layer in organic laser diodes is investigated. The optical material absorption of optimum doped Li:TPBi is as low as 300 cm − 1 at λ = 600 nm . Kelvin probe analysis demonstrates that thin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2007-04, Vol.90 (15), p.151103-151103-3
Hauptverfasser: Rabe, T., Hamwi, S., Meyer, J., Görrn, P., Riedl, T., Johannes, H.-H., Kowalsky, W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151103-3
container_issue 15
container_start_page 151103
container_title Applied physics letters
container_volume 90
creator Rabe, T.
Hamwi, S.
Meyer, J.
Görrn, P.
Riedl, T.
Johannes, H.-H.
Kowalsky, W.
description Lithium doped 2 , 2 ′ , 2 ″ -(1,3,5-benzenetryl)tris(1-phenyl)- 1 H -benzimidazol (TPBi) as electron injection layer in organic laser diodes is investigated. The optical material absorption of optimum doped Li:TPBi is as low as 300 cm − 1 at λ = 600 nm . Kelvin probe analysis demonstrates that thin layers ( 5 nm ) of Li:TPBi already enable efficient electron injection from low optical loss transparent conducting oxide contacts. Moreover, stable current densities of about 100 A ∕ cm 2 can be injected. The waveguide losses added due to these Li:TPBi layers can be as low as 3 cm − 1 . These results present a major step towards electrically contacted, low-loss organic laser structures.
doi_str_mv 10.1063/1.2720757
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2720757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-a471e203f62dc29fa621470f24ccd08415b83c0986e8b448bfacf8408e9f6e9c3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqEw8A-8MqScPxI7CxKq-JIqMQBitBzHBldJXNnJ0H-PSzuwML3vnR6ddA9C1wSWBGp2S5ZUUBCVOEEFASFKRog8RQUAsLJuKnKOLlLa5LGijBXo8232k25976cdDg7n_PbzgLuwtR22vTVTDCP24yY3n1uvdzYm7ELEIX7p0Ruc7OBNGLvZTHnb65SBS3TmdJ_s1TEX6OPx4X31XK5fn15W9-vSUMmnUnNBLAXmatoZ2jhdU8IFOMqN6UByUrWSGWhkbWXLuWydNk5ykLZxtW0MW6Cbw10TQ0rROrWNftBxpwiovRFF1NFIZu8ObDL55_03_8N_tKjg1K8W9gNB9WpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Suitability of lithium doped electron injection layers for organic semiconductor lasers</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Rabe, T. ; Hamwi, S. ; Meyer, J. ; Görrn, P. ; Riedl, T. ; Johannes, H.-H. ; Kowalsky, W.</creator><creatorcontrib>Rabe, T. ; Hamwi, S. ; Meyer, J. ; Görrn, P. ; Riedl, T. ; Johannes, H.-H. ; Kowalsky, W.</creatorcontrib><description>Lithium doped 2 , 2 ′ , 2 ″ -(1,3,5-benzenetryl)tris(1-phenyl)- 1 H -benzimidazol (TPBi) as electron injection layer in organic laser diodes is investigated. The optical material absorption of optimum doped Li:TPBi is as low as 300 cm − 1 at λ = 600 nm . Kelvin probe analysis demonstrates that thin layers ( 5 nm ) of Li:TPBi already enable efficient electron injection from low optical loss transparent conducting oxide contacts. Moreover, stable current densities of about 100 A ∕ cm 2 can be injected. The waveguide losses added due to these Li:TPBi layers can be as low as 3 cm − 1 . These results present a major step towards electrically contacted, low-loss organic laser structures.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.2720757</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2007-04, Vol.90 (15), p.151103-151103-3</ispartof><rights>2007 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-a471e203f62dc29fa621470f24ccd08415b83c0986e8b448bfacf8408e9f6e9c3</citedby><cites>FETCH-LOGICAL-c284t-a471e203f62dc29fa621470f24ccd08415b83c0986e8b448bfacf8408e9f6e9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.2720757$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>Rabe, T.</creatorcontrib><creatorcontrib>Hamwi, S.</creatorcontrib><creatorcontrib>Meyer, J.</creatorcontrib><creatorcontrib>Görrn, P.</creatorcontrib><creatorcontrib>Riedl, T.</creatorcontrib><creatorcontrib>Johannes, H.-H.</creatorcontrib><creatorcontrib>Kowalsky, W.</creatorcontrib><title>Suitability of lithium doped electron injection layers for organic semiconductor lasers</title><title>Applied physics letters</title><description>Lithium doped 2 , 2 ′ , 2 ″ -(1,3,5-benzenetryl)tris(1-phenyl)- 1 H -benzimidazol (TPBi) as electron injection layer in organic laser diodes is investigated. The optical material absorption of optimum doped Li:TPBi is as low as 300 cm − 1 at λ = 600 nm . Kelvin probe analysis demonstrates that thin layers ( 5 nm ) of Li:TPBi already enable efficient electron injection from low optical loss transparent conducting oxide contacts. Moreover, stable current densities of about 100 A ∕ cm 2 can be injected. The waveguide losses added due to these Li:TPBi layers can be as low as 3 cm − 1 . These results present a major step towards electrically contacted, low-loss organic laser structures.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqEw8A-8MqScPxI7CxKq-JIqMQBitBzHBldJXNnJ0H-PSzuwML3vnR6ddA9C1wSWBGp2S5ZUUBCVOEEFASFKRog8RQUAsLJuKnKOLlLa5LGijBXo8232k25976cdDg7n_PbzgLuwtR22vTVTDCP24yY3n1uvdzYm7ELEIX7p0Ruc7OBNGLvZTHnb65SBS3TmdJ_s1TEX6OPx4X31XK5fn15W9-vSUMmnUnNBLAXmatoZ2jhdU8IFOMqN6UByUrWSGWhkbWXLuWydNk5ykLZxtW0MW6Cbw10TQ0rROrWNftBxpwiovRFF1NFIZu8ObDL55_03_8N_tKjg1K8W9gNB9WpU</recordid><startdate>20070409</startdate><enddate>20070409</enddate><creator>Rabe, T.</creator><creator>Hamwi, S.</creator><creator>Meyer, J.</creator><creator>Görrn, P.</creator><creator>Riedl, T.</creator><creator>Johannes, H.-H.</creator><creator>Kowalsky, W.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070409</creationdate><title>Suitability of lithium doped electron injection layers for organic semiconductor lasers</title><author>Rabe, T. ; Hamwi, S. ; Meyer, J. ; Görrn, P. ; Riedl, T. ; Johannes, H.-H. ; Kowalsky, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-a471e203f62dc29fa621470f24ccd08415b83c0986e8b448bfacf8408e9f6e9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabe, T.</creatorcontrib><creatorcontrib>Hamwi, S.</creatorcontrib><creatorcontrib>Meyer, J.</creatorcontrib><creatorcontrib>Görrn, P.</creatorcontrib><creatorcontrib>Riedl, T.</creatorcontrib><creatorcontrib>Johannes, H.-H.</creatorcontrib><creatorcontrib>Kowalsky, W.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabe, T.</au><au>Hamwi, S.</au><au>Meyer, J.</au><au>Görrn, P.</au><au>Riedl, T.</au><au>Johannes, H.-H.</au><au>Kowalsky, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suitability of lithium doped electron injection layers for organic semiconductor lasers</atitle><jtitle>Applied physics letters</jtitle><date>2007-04-09</date><risdate>2007</risdate><volume>90</volume><issue>15</issue><spage>151103</spage><epage>151103-3</epage><pages>151103-151103-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Lithium doped 2 , 2 ′ , 2 ″ -(1,3,5-benzenetryl)tris(1-phenyl)- 1 H -benzimidazol (TPBi) as electron injection layer in organic laser diodes is investigated. The optical material absorption of optimum doped Li:TPBi is as low as 300 cm − 1 at λ = 600 nm . Kelvin probe analysis demonstrates that thin layers ( 5 nm ) of Li:TPBi already enable efficient electron injection from low optical loss transparent conducting oxide contacts. Moreover, stable current densities of about 100 A ∕ cm 2 can be injected. The waveguide losses added due to these Li:TPBi layers can be as low as 3 cm − 1 . These results present a major step towards electrically contacted, low-loss organic laser structures.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2720757</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2007-04, Vol.90 (15), p.151103-151103-3
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_2720757
source AIP Journals Complete; AIP Digital Archive
title Suitability of lithium doped electron injection layers for organic semiconductor lasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A05%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suitability%20of%20lithium%20doped%20electron%20injection%20layers%20for%20organic%20semiconductor%20lasers&rft.jtitle=Applied%20physics%20letters&rft.au=Rabe,%20T.&rft.date=2007-04-09&rft.volume=90&rft.issue=15&rft.spage=151103&rft.epage=151103-3&rft.pages=151103-151103-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.2720757&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true