On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator
Using the modified Prelle-Singer approach, we point out that explicit time independent first integrals can be identified for the damped linear harmonic oscillator in different parameter regimes. Using these constants of motion, an appropriate Lagrangian and Hamiltonian formalism is developed and the...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2007-03, Vol.48 (3), p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Journal of mathematical physics |
container_volume | 48 |
creator | Chandrasekar, V. K. Senthilvelan, M. Lakshmanan, M. |
description | Using the modified Prelle-Singer approach, we point out that explicit time independent first integrals can be identified for the damped linear harmonic oscillator in different parameter regimes. Using these constants of motion, an appropriate Lagrangian and Hamiltonian formalism is developed and the resultant canonical equations are shown to lead to the standard dynamical description. Suitable canonical transformations to standard Hamiltonian forms are also obtained. It is also shown that a possible quantum mechanical description can be developed either in the coordinate or momentum representations using the Hamiltonian forms. |
doi_str_mv | 10.1063/1.2711375 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2711375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1252883391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-eaaa4e3d22812dca99a55a399feff4b3cb59b9bb05571180ca4f32962400f8813</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs7pwW8QBA8KnfnTtMlRhjphsIt6DW_TZOvokpp0gt_ezg120tNL4Jfn5X0QuqZkQknBH-iElZTyUpygESVSZWUh5CkaEcJYxnIpz9FFSmtCKJV5PkIfC4_7lcVzWEbwywY8Bl_jGWyatg9-965tMrHp-iZ4HNyvrmHT2Rq3jbcQ8QriZqAGh2SatoU-xEt05qBN9uowx-j9-eltOsvmi5fX6eM8M1wUfWYBILe8ZkxSVhtQCoQArpSzzuUVN5VQlaoqIsRwlSQGcseZKlhOiJOS8jG62ed2MXxuber1OmyjH1ZqRkXBOCmKAd3tkYkhpWid7mKzgfitKdG71jTVh9YGe3sIhGSgdUMppknHD7KkhEo-uPu9G07uYdfNv6F_4q8Qj1B3teM_o-6Huw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215623066</pqid></control><display><type>article</type><title>On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Chandrasekar, V. K. ; Senthilvelan, M. ; Lakshmanan, M.</creator><creatorcontrib>Chandrasekar, V. K. ; Senthilvelan, M. ; Lakshmanan, M.</creatorcontrib><description>Using the modified Prelle-Singer approach, we point out that explicit time independent first integrals can be identified for the damped linear harmonic oscillator in different parameter regimes. Using these constants of motion, an appropriate Lagrangian and Hamiltonian formalism is developed and the resultant canonical equations are shown to lead to the standard dynamical description. Suitable canonical transformations to standard Hamiltonian forms are also obtained. It is also shown that a possible quantum mechanical description can be developed either in the coordinate or momentum representations using the Hamiltonian forms.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.2711375</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Lagrange multiplier ; Mathematical methods in physics ; Mathematics ; Physics ; Sciences and techniques of general use</subject><ispartof>Journal of mathematical physics, 2007-03, Vol.48 (3), p.1</ispartof><rights>American Institute of Physics</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Physics Mar 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-eaaa4e3d22812dca99a55a399feff4b3cb59b9bb05571180ca4f32962400f8813</citedby><cites>FETCH-LOGICAL-c356t-eaaa4e3d22812dca99a55a399feff4b3cb59b9bb05571180ca4f32962400f8813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.2711375$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18710183$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chandrasekar, V. K.</creatorcontrib><creatorcontrib>Senthilvelan, M.</creatorcontrib><creatorcontrib>Lakshmanan, M.</creatorcontrib><title>On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator</title><title>Journal of mathematical physics</title><description>Using the modified Prelle-Singer approach, we point out that explicit time independent first integrals can be identified for the damped linear harmonic oscillator in different parameter regimes. Using these constants of motion, an appropriate Lagrangian and Hamiltonian formalism is developed and the resultant canonical equations are shown to lead to the standard dynamical description. Suitable canonical transformations to standard Hamiltonian forms are also obtained. It is also shown that a possible quantum mechanical description can be developed either in the coordinate or momentum representations using the Hamiltonian forms.</description><subject>Exact sciences and technology</subject><subject>Lagrange multiplier</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCs7pwW8QBA8KnfnTtMlRhjphsIt6DW_TZOvokpp0gt_ezg120tNL4Jfn5X0QuqZkQknBH-iElZTyUpygESVSZWUh5CkaEcJYxnIpz9FFSmtCKJV5PkIfC4_7lcVzWEbwywY8Bl_jGWyatg9-965tMrHp-iZ4HNyvrmHT2Rq3jbcQ8QriZqAGh2SatoU-xEt05qBN9uowx-j9-eltOsvmi5fX6eM8M1wUfWYBILe8ZkxSVhtQCoQArpSzzuUVN5VQlaoqIsRwlSQGcseZKlhOiJOS8jG62ed2MXxuber1OmyjH1ZqRkXBOCmKAd3tkYkhpWid7mKzgfitKdG71jTVh9YGe3sIhGSgdUMppknHD7KkhEo-uPu9G07uYdfNv6F_4q8Qj1B3teM_o-6Huw</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Chandrasekar, V. K.</creator><creator>Senthilvelan, M.</creator><creator>Lakshmanan, M.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20070301</creationdate><title>On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator</title><author>Chandrasekar, V. K. ; Senthilvelan, M. ; Lakshmanan, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-eaaa4e3d22812dca99a55a399feff4b3cb59b9bb05571180ca4f32962400f8813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Exact sciences and technology</topic><topic>Lagrange multiplier</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrasekar, V. K.</creatorcontrib><creatorcontrib>Senthilvelan, M.</creatorcontrib><creatorcontrib>Lakshmanan, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrasekar, V. K.</au><au>Senthilvelan, M.</au><au>Lakshmanan, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator</atitle><jtitle>Journal of mathematical physics</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>48</volume><issue>3</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Using the modified Prelle-Singer approach, we point out that explicit time independent first integrals can be identified for the damped linear harmonic oscillator in different parameter regimes. Using these constants of motion, an appropriate Lagrangian and Hamiltonian formalism is developed and the resultant canonical equations are shown to lead to the standard dynamical description. Suitable canonical transformations to standard Hamiltonian forms are also obtained. It is also shown that a possible quantum mechanical description can be developed either in the coordinate or momentum representations using the Hamiltonian forms.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2711375</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2007-03, Vol.48 (3), p.1 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_2711375 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | Exact sciences and technology Lagrange multiplier Mathematical methods in physics Mathematics Physics Sciences and techniques of general use |
title | On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Lagrangian%20and%20Hamiltonian%20description%20of%20the%20damped%20linear%20harmonic%20oscillator&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Chandrasekar,%20V.%20K.&rft.date=2007-03-01&rft.volume=48&rft.issue=3&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.2711375&rft_dat=%3Cproquest_cross%3E1252883391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215623066&rft_id=info:pmid/&rfr_iscdi=true |