On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator

Using the modified Prelle-Singer approach, we point out that explicit time independent first integrals can be identified for the damped linear harmonic oscillator in different parameter regimes. Using these constants of motion, an appropriate Lagrangian and Hamiltonian formalism is developed and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2007-03, Vol.48 (3), p.1
Hauptverfasser: Chandrasekar, V. K., Senthilvelan, M., Lakshmanan, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1
container_title Journal of mathematical physics
container_volume 48
creator Chandrasekar, V. K.
Senthilvelan, M.
Lakshmanan, M.
description Using the modified Prelle-Singer approach, we point out that explicit time independent first integrals can be identified for the damped linear harmonic oscillator in different parameter regimes. Using these constants of motion, an appropriate Lagrangian and Hamiltonian formalism is developed and the resultant canonical equations are shown to lead to the standard dynamical description. Suitable canonical transformations to standard Hamiltonian forms are also obtained. It is also shown that a possible quantum mechanical description can be developed either in the coordinate or momentum representations using the Hamiltonian forms.
doi_str_mv 10.1063/1.2711375
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2711375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1252883391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-eaaa4e3d22812dca99a55a399feff4b3cb59b9bb05571180ca4f32962400f8813</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs7pwW8QBA8KnfnTtMlRhjphsIt6DW_TZOvokpp0gt_ezg120tNL4Jfn5X0QuqZkQknBH-iElZTyUpygESVSZWUh5CkaEcJYxnIpz9FFSmtCKJV5PkIfC4_7lcVzWEbwywY8Bl_jGWyatg9-965tMrHp-iZ4HNyvrmHT2Rq3jbcQ8QriZqAGh2SatoU-xEt05qBN9uowx-j9-eltOsvmi5fX6eM8M1wUfWYBILe8ZkxSVhtQCoQArpSzzuUVN5VQlaoqIsRwlSQGcseZKlhOiJOS8jG62ed2MXxuber1OmyjH1ZqRkXBOCmKAd3tkYkhpWid7mKzgfitKdG71jTVh9YGe3sIhGSgdUMppknHD7KkhEo-uPu9G07uYdfNv6F_4q8Qj1B3teM_o-6Huw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215623066</pqid></control><display><type>article</type><title>On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Chandrasekar, V. K. ; Senthilvelan, M. ; Lakshmanan, M.</creator><creatorcontrib>Chandrasekar, V. K. ; Senthilvelan, M. ; Lakshmanan, M.</creatorcontrib><description>Using the modified Prelle-Singer approach, we point out that explicit time independent first integrals can be identified for the damped linear harmonic oscillator in different parameter regimes. Using these constants of motion, an appropriate Lagrangian and Hamiltonian formalism is developed and the resultant canonical equations are shown to lead to the standard dynamical description. Suitable canonical transformations to standard Hamiltonian forms are also obtained. It is also shown that a possible quantum mechanical description can be developed either in the coordinate or momentum representations using the Hamiltonian forms.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.2711375</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Lagrange multiplier ; Mathematical methods in physics ; Mathematics ; Physics ; Sciences and techniques of general use</subject><ispartof>Journal of mathematical physics, 2007-03, Vol.48 (3), p.1</ispartof><rights>American Institute of Physics</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Physics Mar 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-eaaa4e3d22812dca99a55a399feff4b3cb59b9bb05571180ca4f32962400f8813</citedby><cites>FETCH-LOGICAL-c356t-eaaa4e3d22812dca99a55a399feff4b3cb59b9bb05571180ca4f32962400f8813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.2711375$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18710183$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chandrasekar, V. K.</creatorcontrib><creatorcontrib>Senthilvelan, M.</creatorcontrib><creatorcontrib>Lakshmanan, M.</creatorcontrib><title>On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator</title><title>Journal of mathematical physics</title><description>Using the modified Prelle-Singer approach, we point out that explicit time independent first integrals can be identified for the damped linear harmonic oscillator in different parameter regimes. Using these constants of motion, an appropriate Lagrangian and Hamiltonian formalism is developed and the resultant canonical equations are shown to lead to the standard dynamical description. Suitable canonical transformations to standard Hamiltonian forms are also obtained. It is also shown that a possible quantum mechanical description can be developed either in the coordinate or momentum representations using the Hamiltonian forms.</description><subject>Exact sciences and technology</subject><subject>Lagrange multiplier</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCs7pwW8QBA8KnfnTtMlRhjphsIt6DW_TZOvokpp0gt_ezg120tNL4Jfn5X0QuqZkQknBH-iElZTyUpygESVSZWUh5CkaEcJYxnIpz9FFSmtCKJV5PkIfC4_7lcVzWEbwywY8Bl_jGWyatg9-965tMrHp-iZ4HNyvrmHT2Rq3jbcQ8QriZqAGh2SatoU-xEt05qBN9uowx-j9-eltOsvmi5fX6eM8M1wUfWYBILe8ZkxSVhtQCoQArpSzzuUVN5VQlaoqIsRwlSQGcseZKlhOiJOS8jG62ed2MXxuber1OmyjH1ZqRkXBOCmKAd3tkYkhpWid7mKzgfitKdG71jTVh9YGe3sIhGSgdUMppknHD7KkhEo-uPu9G07uYdfNv6F_4q8Qj1B3teM_o-6Huw</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Chandrasekar, V. K.</creator><creator>Senthilvelan, M.</creator><creator>Lakshmanan, M.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20070301</creationdate><title>On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator</title><author>Chandrasekar, V. K. ; Senthilvelan, M. ; Lakshmanan, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-eaaa4e3d22812dca99a55a399feff4b3cb59b9bb05571180ca4f32962400f8813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Exact sciences and technology</topic><topic>Lagrange multiplier</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrasekar, V. K.</creatorcontrib><creatorcontrib>Senthilvelan, M.</creatorcontrib><creatorcontrib>Lakshmanan, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrasekar, V. K.</au><au>Senthilvelan, M.</au><au>Lakshmanan, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator</atitle><jtitle>Journal of mathematical physics</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>48</volume><issue>3</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Using the modified Prelle-Singer approach, we point out that explicit time independent first integrals can be identified for the damped linear harmonic oscillator in different parameter regimes. Using these constants of motion, an appropriate Lagrangian and Hamiltonian formalism is developed and the resultant canonical equations are shown to lead to the standard dynamical description. Suitable canonical transformations to standard Hamiltonian forms are also obtained. It is also shown that a possible quantum mechanical description can be developed either in the coordinate or momentum representations using the Hamiltonian forms.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2711375</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2007-03, Vol.48 (3), p.1
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_2711375
source AIP Journals Complete; AIP Digital Archive
subjects Exact sciences and technology
Lagrange multiplier
Mathematical methods in physics
Mathematics
Physics
Sciences and techniques of general use
title On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Lagrangian%20and%20Hamiltonian%20description%20of%20the%20damped%20linear%20harmonic%20oscillator&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Chandrasekar,%20V.%20K.&rft.date=2007-03-01&rft.volume=48&rft.issue=3&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.2711375&rft_dat=%3Cproquest_cross%3E1252883391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215623066&rft_id=info:pmid/&rfr_iscdi=true