Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors

Here a physically based channel mobility model has been developed to investigate the temperature dependence of the field-effect mobility of 4H-SiC metal-oxide-semiconductor (MOS) transistors with thermally oxidized gate insulators. This model has been designed so that it accounts for the high densit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2006-12, Vol.100 (11)
Hauptverfasser: Pérez-Tomás, A., Brosselard, P., Godignon, P., Millán, J., Mestres, N., Jennings, M. R., Covington, J. A., Mawby, P. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Journal of applied physics
container_volume 100
creator Pérez-Tomás, A.
Brosselard, P.
Godignon, P.
Millán, J.
Mestres, N.
Jennings, M. R.
Covington, J. A.
Mawby, P. A.
description Here a physically based channel mobility model has been developed to investigate the temperature dependence of the field-effect mobility of 4H-SiC metal-oxide-semiconductor (MOS) transistors with thermally oxidized gate insulators. This model has been designed so that it accounts for the high density of traps at the MOS interface. This temperature dependence is a key issue for silicon carbide electronics, as its basic material properties make it the foremost semiconductor for high power/high temperature electronic devices in applications such as spacecraft, aircraft, automobile, and energy distribution. Our modeling suggests that the high density of charged acceptor interface traps, encountered in thermally grown gate oxides, modulates the channel mobility due to the Coulomb scattering of free carriers in the inversion layer. When the temperature increases, the field-effect mobility of these devices also increases, due to an increase in inversion charge and a reduction of the trapped charge. Experimental data of the field-effect mobility temperature dependence are in good agreement with this model.
doi_str_mv 10.1063/1.2395597
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2395597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_2395597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-4fbb3f3ef633098416f5b07e2efba576ef564e3d65cc2b215e74727ac5474b8c3</originalsourceid><addsrcrecordid>eNotkD1LQzEYRoMoeK0O_oOsDqn5zs0oxVqh4KAuLpck941E7kdJUrD_3ko7nYczPMNB6J7RJaNaPLIlF1Ypay5Qw2hriVGKXqKGUs5Ia429Rjel_FDKWCtsg77WCYaeQIwQKh5nn4ZUD7jCuIPs6j7DUfYwpOkbzxHLDXlPKzxCdQOZf1MPpMCYwjz1-1DnjGt2U0nlOMstuopuKHB35gJ9rp8_VhuyfXt5XT1tSeBWVSKj9yIKiFoIalvJdFSeGuAQvVNGQ1Ragui1CoF7zhQYabhxQUkjfRvEAj2cfkOeS8kQu11Oo8uHjtHuP0rHunMU8QcM6FVu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Pérez-Tomás, A. ; Brosselard, P. ; Godignon, P. ; Millán, J. ; Mestres, N. ; Jennings, M. R. ; Covington, J. A. ; Mawby, P. A.</creator><creatorcontrib>Pérez-Tomás, A. ; Brosselard, P. ; Godignon, P. ; Millán, J. ; Mestres, N. ; Jennings, M. R. ; Covington, J. A. ; Mawby, P. A.</creatorcontrib><description>Here a physically based channel mobility model has been developed to investigate the temperature dependence of the field-effect mobility of 4H-SiC metal-oxide-semiconductor (MOS) transistors with thermally oxidized gate insulators. This model has been designed so that it accounts for the high density of traps at the MOS interface. This temperature dependence is a key issue for silicon carbide electronics, as its basic material properties make it the foremost semiconductor for high power/high temperature electronic devices in applications such as spacecraft, aircraft, automobile, and energy distribution. Our modeling suggests that the high density of charged acceptor interface traps, encountered in thermally grown gate oxides, modulates the channel mobility due to the Coulomb scattering of free carriers in the inversion layer. When the temperature increases, the field-effect mobility of these devices also increases, due to an increase in inversion charge and a reduction of the trapped charge. Experimental data of the field-effect mobility temperature dependence are in good agreement with this model.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.2395597</identifier><language>eng</language><ispartof>Journal of applied physics, 2006-12, Vol.100 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-4fbb3f3ef633098416f5b07e2efba576ef564e3d65cc2b215e74727ac5474b8c3</citedby><cites>FETCH-LOGICAL-c295t-4fbb3f3ef633098416f5b07e2efba576ef564e3d65cc2b215e74727ac5474b8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Pérez-Tomás, A.</creatorcontrib><creatorcontrib>Brosselard, P.</creatorcontrib><creatorcontrib>Godignon, P.</creatorcontrib><creatorcontrib>Millán, J.</creatorcontrib><creatorcontrib>Mestres, N.</creatorcontrib><creatorcontrib>Jennings, M. R.</creatorcontrib><creatorcontrib>Covington, J. A.</creatorcontrib><creatorcontrib>Mawby, P. A.</creatorcontrib><title>Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors</title><title>Journal of applied physics</title><description>Here a physically based channel mobility model has been developed to investigate the temperature dependence of the field-effect mobility of 4H-SiC metal-oxide-semiconductor (MOS) transistors with thermally oxidized gate insulators. This model has been designed so that it accounts for the high density of traps at the MOS interface. This temperature dependence is a key issue for silicon carbide electronics, as its basic material properties make it the foremost semiconductor for high power/high temperature electronic devices in applications such as spacecraft, aircraft, automobile, and energy distribution. Our modeling suggests that the high density of charged acceptor interface traps, encountered in thermally grown gate oxides, modulates the channel mobility due to the Coulomb scattering of free carriers in the inversion layer. When the temperature increases, the field-effect mobility of these devices also increases, due to an increase in inversion charge and a reduction of the trapped charge. Experimental data of the field-effect mobility temperature dependence are in good agreement with this model.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotkD1LQzEYRoMoeK0O_oOsDqn5zs0oxVqh4KAuLpck941E7kdJUrD_3ko7nYczPMNB6J7RJaNaPLIlF1Ypay5Qw2hriVGKXqKGUs5Ia429Rjel_FDKWCtsg77WCYaeQIwQKh5nn4ZUD7jCuIPs6j7DUfYwpOkbzxHLDXlPKzxCdQOZf1MPpMCYwjz1-1DnjGt2U0nlOMstuopuKHB35gJ9rp8_VhuyfXt5XT1tSeBWVSKj9yIKiFoIalvJdFSeGuAQvVNGQ1Ragui1CoF7zhQYabhxQUkjfRvEAj2cfkOeS8kQu11Oo8uHjtHuP0rHunMU8QcM6FVu</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Pérez-Tomás, A.</creator><creator>Brosselard, P.</creator><creator>Godignon, P.</creator><creator>Millán, J.</creator><creator>Mestres, N.</creator><creator>Jennings, M. R.</creator><creator>Covington, J. A.</creator><creator>Mawby, P. A.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20061201</creationdate><title>Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors</title><author>Pérez-Tomás, A. ; Brosselard, P. ; Godignon, P. ; Millán, J. ; Mestres, N. ; Jennings, M. R. ; Covington, J. A. ; Mawby, P. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-4fbb3f3ef633098416f5b07e2efba576ef564e3d65cc2b215e74727ac5474b8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Tomás, A.</creatorcontrib><creatorcontrib>Brosselard, P.</creatorcontrib><creatorcontrib>Godignon, P.</creatorcontrib><creatorcontrib>Millán, J.</creatorcontrib><creatorcontrib>Mestres, N.</creatorcontrib><creatorcontrib>Jennings, M. R.</creatorcontrib><creatorcontrib>Covington, J. A.</creatorcontrib><creatorcontrib>Mawby, P. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Tomás, A.</au><au>Brosselard, P.</au><au>Godignon, P.</au><au>Millán, J.</au><au>Mestres, N.</au><au>Jennings, M. R.</au><au>Covington, J. A.</au><au>Mawby, P. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors</atitle><jtitle>Journal of applied physics</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>100</volume><issue>11</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Here a physically based channel mobility model has been developed to investigate the temperature dependence of the field-effect mobility of 4H-SiC metal-oxide-semiconductor (MOS) transistors with thermally oxidized gate insulators. This model has been designed so that it accounts for the high density of traps at the MOS interface. This temperature dependence is a key issue for silicon carbide electronics, as its basic material properties make it the foremost semiconductor for high power/high temperature electronic devices in applications such as spacecraft, aircraft, automobile, and energy distribution. Our modeling suggests that the high density of charged acceptor interface traps, encountered in thermally grown gate oxides, modulates the channel mobility due to the Coulomb scattering of free carriers in the inversion layer. When the temperature increases, the field-effect mobility of these devices also increases, due to an increase in inversion charge and a reduction of the trapped charge. Experimental data of the field-effect mobility temperature dependence are in good agreement with this model.</abstract><doi>10.1063/1.2395597</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2006-12, Vol.100 (11)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_2395597
source AIP Journals Complete; AIP Digital Archive
title Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field-effect%20mobility%20temperature%20modeling%20of%204H-SiC%20metal-oxide-semiconductor%20transistors&rft.jtitle=Journal%20of%20applied%20physics&rft.au=P%C3%A9rez-Tom%C3%A1s,%20A.&rft.date=2006-12-01&rft.volume=100&rft.issue=11&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.2395597&rft_dat=%3Ccrossref%3E10_1063_1_2395597%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true