Interface circuits for quartz crystal sensors in scanning probe microscopy applications

Complementary to industrial cantilever based force sensors in scanning probe microscopy (SPM), symmetrical quartz crystal resonators (QCRs), e.g., tuning fork, trident tuning fork, and needle quartz sensors, are of great interest. A self-excitation scheme with QCR is particularly promising and allow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2006-08, Vol.77 (8), p.083701-083701-5
Hauptverfasser: Jersch, Johann, Maletzky, Tobias, Fuchs, Harald
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 083701-5
container_issue 8
container_start_page 083701
container_title Review of scientific instruments
container_volume 77
creator Jersch, Johann
Maletzky, Tobias
Fuchs, Harald
description Complementary to industrial cantilever based force sensors in scanning probe microscopy (SPM), symmetrical quartz crystal resonators (QCRs), e.g., tuning fork, trident tuning fork, and needle quartz sensors, are of great interest. A self-excitation scheme with QCR is particularly promising and allows the development of cheap SPM heads with excellent characteristics. We have developed a high performance electronic interface based on an amplitude controlled oscillator and a phase-locked loop frequency demodulator applicable for QCR with frequencies from 10 up to 10 MHz . The oscillation amplitude of the sensing tip can be set from thermal noise level up to amplitudes of a tenth of nanometers. The device is small, cheap, and highly sensitive in amplitude and frequency measurements. Important features of the design are grounded QCR, parasitic capacity compensation, bridge schematic, and high temperature stability. Characteristic experimental data of the device and its operation in combination with a commercial SPM and a homemade scanning near-field optical microscope are reported. By using the 1 MHz needle quartz resonator with a standard atomic force microscope tip attached, atomic scale resolution in ambient conditions is achieved. Furthermore, reproducible measurements on very soft materials (Langmuir-Blodgett layers) with a very stiff needle quartz ( ∼ 400 000 N ∕ m ) are possible.
doi_str_mv 10.1063/1.2238467
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2238467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>rsi</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-6f68b733adc76fa8c47f32a59c8b065e6dc1065a87340352a2a6ffba704b81ab3</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEuFR8AduKTbY613baZBQxCNSJBoQpTU7sZFR4l08ThG-noQEOm4zzdHo3sPYlRRjKbS6keO6VrbR5oiNpLCTyuhaHbOREKqptGnsKTsj-hDbtFKO2NssFZ8DoOcYM65jIR76zD_XkMsXx7yhAktOPlGficfECSGlmN75kPvO81XE3BP2w4bDMCwjQol9ogt2EmBJ_vJwz9nrw_3L9KmaPz_OpnfzCpVtS6WDtp1RChZodACLjQmqhnaCthO69XqB21ktWKMaodoaatAhdGBE01kJnTpn1_u_uxaUfXBDjivIGyeF2xlx0h2MbNnbPUsYy0_N_-E_Le5XiwvqG5yzao8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interface circuits for quartz crystal sensors in scanning probe microscopy applications</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Jersch, Johann ; Maletzky, Tobias ; Fuchs, Harald</creator><creatorcontrib>Jersch, Johann ; Maletzky, Tobias ; Fuchs, Harald</creatorcontrib><description>Complementary to industrial cantilever based force sensors in scanning probe microscopy (SPM), symmetrical quartz crystal resonators (QCRs), e.g., tuning fork, trident tuning fork, and needle quartz sensors, are of great interest. A self-excitation scheme with QCR is particularly promising and allows the development of cheap SPM heads with excellent characteristics. We have developed a high performance electronic interface based on an amplitude controlled oscillator and a phase-locked loop frequency demodulator applicable for QCR with frequencies from 10 up to 10 MHz . The oscillation amplitude of the sensing tip can be set from thermal noise level up to amplitudes of a tenth of nanometers. The device is small, cheap, and highly sensitive in amplitude and frequency measurements. Important features of the design are grounded QCR, parasitic capacity compensation, bridge schematic, and high temperature stability. Characteristic experimental data of the device and its operation in combination with a commercial SPM and a homemade scanning near-field optical microscope are reported. By using the 1 MHz needle quartz resonator with a standard atomic force microscope tip attached, atomic scale resolution in ambient conditions is achieved. Furthermore, reproducible measurements on very soft materials (Langmuir-Blodgett layers) with a very stiff needle quartz ( ∼ 400 000 N ∕ m ) are possible.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.2238467</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Review of scientific instruments, 2006-08, Vol.77 (8), p.083701-083701-5</ispartof><rights>2006 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-6f68b733adc76fa8c47f32a59c8b065e6dc1065a87340352a2a6ffba704b81ab3</citedby><cites>FETCH-LOGICAL-c385t-6f68b733adc76fa8c47f32a59c8b065e6dc1065a87340352a2a6ffba704b81ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.2238467$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4498,27901,27902,76127,76133</link.rule.ids></links><search><creatorcontrib>Jersch, Johann</creatorcontrib><creatorcontrib>Maletzky, Tobias</creatorcontrib><creatorcontrib>Fuchs, Harald</creatorcontrib><title>Interface circuits for quartz crystal sensors in scanning probe microscopy applications</title><title>Review of scientific instruments</title><description>Complementary to industrial cantilever based force sensors in scanning probe microscopy (SPM), symmetrical quartz crystal resonators (QCRs), e.g., tuning fork, trident tuning fork, and needle quartz sensors, are of great interest. A self-excitation scheme with QCR is particularly promising and allows the development of cheap SPM heads with excellent characteristics. We have developed a high performance electronic interface based on an amplitude controlled oscillator and a phase-locked loop frequency demodulator applicable for QCR with frequencies from 10 up to 10 MHz . The oscillation amplitude of the sensing tip can be set from thermal noise level up to amplitudes of a tenth of nanometers. The device is small, cheap, and highly sensitive in amplitude and frequency measurements. Important features of the design are grounded QCR, parasitic capacity compensation, bridge schematic, and high temperature stability. Characteristic experimental data of the device and its operation in combination with a commercial SPM and a homemade scanning near-field optical microscope are reported. By using the 1 MHz needle quartz resonator with a standard atomic force microscope tip attached, atomic scale resolution in ambient conditions is achieved. Furthermore, reproducible measurements on very soft materials (Langmuir-Blodgett layers) with a very stiff needle quartz ( ∼ 400 000 N ∕ m ) are possible.</description><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEuFR8AduKTbY613baZBQxCNSJBoQpTU7sZFR4l08ThG-noQEOm4zzdHo3sPYlRRjKbS6keO6VrbR5oiNpLCTyuhaHbOREKqptGnsKTsj-hDbtFKO2NssFZ8DoOcYM65jIR76zD_XkMsXx7yhAktOPlGficfECSGlmN75kPvO81XE3BP2w4bDMCwjQol9ogt2EmBJ_vJwz9nrw_3L9KmaPz_OpnfzCpVtS6WDtp1RChZodACLjQmqhnaCthO69XqB21ktWKMaodoaatAhdGBE01kJnTpn1_u_uxaUfXBDjivIGyeF2xlx0h2MbNnbPUsYy0_N_-E_Le5XiwvqG5yzao8</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Jersch, Johann</creator><creator>Maletzky, Tobias</creator><creator>Fuchs, Harald</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060801</creationdate><title>Interface circuits for quartz crystal sensors in scanning probe microscopy applications</title><author>Jersch, Johann ; Maletzky, Tobias ; Fuchs, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-6f68b733adc76fa8c47f32a59c8b065e6dc1065a87340352a2a6ffba704b81ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jersch, Johann</creatorcontrib><creatorcontrib>Maletzky, Tobias</creatorcontrib><creatorcontrib>Fuchs, Harald</creatorcontrib><collection>CrossRef</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jersch, Johann</au><au>Maletzky, Tobias</au><au>Fuchs, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface circuits for quartz crystal sensors in scanning probe microscopy applications</atitle><jtitle>Review of scientific instruments</jtitle><date>2006-08-01</date><risdate>2006</risdate><volume>77</volume><issue>8</issue><spage>083701</spage><epage>083701-5</epage><pages>083701-083701-5</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Complementary to industrial cantilever based force sensors in scanning probe microscopy (SPM), symmetrical quartz crystal resonators (QCRs), e.g., tuning fork, trident tuning fork, and needle quartz sensors, are of great interest. A self-excitation scheme with QCR is particularly promising and allows the development of cheap SPM heads with excellent characteristics. We have developed a high performance electronic interface based on an amplitude controlled oscillator and a phase-locked loop frequency demodulator applicable for QCR with frequencies from 10 up to 10 MHz . The oscillation amplitude of the sensing tip can be set from thermal noise level up to amplitudes of a tenth of nanometers. The device is small, cheap, and highly sensitive in amplitude and frequency measurements. Important features of the design are grounded QCR, parasitic capacity compensation, bridge schematic, and high temperature stability. Characteristic experimental data of the device and its operation in combination with a commercial SPM and a homemade scanning near-field optical microscope are reported. By using the 1 MHz needle quartz resonator with a standard atomic force microscope tip attached, atomic scale resolution in ambient conditions is achieved. Furthermore, reproducible measurements on very soft materials (Langmuir-Blodgett layers) with a very stiff needle quartz ( ∼ 400 000 N ∕ m ) are possible.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2238467</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2006-08, Vol.77 (8), p.083701-083701-5
issn 0034-6748
1089-7623
language eng
recordid cdi_crossref_primary_10_1063_1_2238467
source AIP Journals Complete; AIP Digital Archive
title Interface circuits for quartz crystal sensors in scanning probe microscopy applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20circuits%20for%20quartz%20crystal%20sensors%20in%20scanning%20probe%20microscopy%20applications&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Jersch,%20Johann&rft.date=2006-08-01&rft.volume=77&rft.issue=8&rft.spage=083701&rft.epage=083701-5&rft.pages=083701-083701-5&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.2238467&rft_dat=%3Cscitation_cross%3Ersi%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true