Formation of germanium nanocrystals embedded in silicon-oxygen-nitride layer

The formation of germanium nanocrystals embedded in silicon-oxygen nitride with distributed charge storage elements is proposed in this work. A large memory window is observed due to isolated Ge nanocrystals in the SiON gate stack layer. The Ge nanocrystals were nucleated after high temperature oxid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2006-07, Vol.89 (5)
Hauptverfasser: Tu, Chun-Hao, Chang, Ting-Chang, Liu, Po-Tsun, Liu, Hsin-Chou, Tsai, Chia-Chou, Chang, Li-Ting, Tseng, Tseung-Yuan, Sze, Simon M., Chang, Chun-Yen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Applied physics letters
container_volume 89
creator Tu, Chun-Hao
Chang, Ting-Chang
Liu, Po-Tsun
Liu, Hsin-Chou
Tsai, Chia-Chou
Chang, Li-Ting
Tseng, Tseung-Yuan
Sze, Simon M.
Chang, Chun-Yen
description The formation of germanium nanocrystals embedded in silicon-oxygen nitride with distributed charge storage elements is proposed in this work. A large memory window is observed due to isolated Ge nanocrystals in the SiON gate stack layer. The Ge nanocrystals were nucleated after high temperature oxidized SiGeN layer. The nonvolatile memory with the Ge nanocrystals embedded in SiON stack layer exhibits 4V threshold voltage shift under 10V write operation. Also, the manufacture technology using the sequent high-temperature oxidation of the a-Si layer acting as the blocking oxide is proposed to enhance the performance of nonvolatile memory devices.
doi_str_mv 10.1063/1.2227059
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2227059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_2227059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-4b7c4fc60303f90be6be2b9f349eb79778bb91a57dde549b2878bb47781a222f3</originalsourceid><addsrcrecordid>eNotUM1KxDAYDOKCddeDb5Crh6z5aZvmKIurQsGLnkuSflkibSJJBfv2ZnFPwwzDDDMI3TO6Z7QVj2zPOZe0UVeoYlRKIhjrrlFFKRWkVQ27Qbc5fxXacCEq1B9jmvXiY8DR4RMUEvzPjIMO0aY1L3rKGGYD4wgj9gFnP3kbA4m_6wkCCX5JfgQ86RXSDm1c8cPdBbfo8_j8cXgl_fvL2-GpJ5ZztZDaSFs721JBhVPUQGuAG-VErcBIJWVnjGK6kaWzqZXh3Vmpi850WefEFj3859oUc07ghu_kZ53WgdHhfMPAhssN4g_hJlAu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Formation of germanium nanocrystals embedded in silicon-oxygen-nitride layer</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Tu, Chun-Hao ; Chang, Ting-Chang ; Liu, Po-Tsun ; Liu, Hsin-Chou ; Tsai, Chia-Chou ; Chang, Li-Ting ; Tseng, Tseung-Yuan ; Sze, Simon M. ; Chang, Chun-Yen</creator><creatorcontrib>Tu, Chun-Hao ; Chang, Ting-Chang ; Liu, Po-Tsun ; Liu, Hsin-Chou ; Tsai, Chia-Chou ; Chang, Li-Ting ; Tseng, Tseung-Yuan ; Sze, Simon M. ; Chang, Chun-Yen</creatorcontrib><description>The formation of germanium nanocrystals embedded in silicon-oxygen nitride with distributed charge storage elements is proposed in this work. A large memory window is observed due to isolated Ge nanocrystals in the SiON gate stack layer. The Ge nanocrystals were nucleated after high temperature oxidized SiGeN layer. The nonvolatile memory with the Ge nanocrystals embedded in SiON stack layer exhibits 4V threshold voltage shift under 10V write operation. Also, the manufacture technology using the sequent high-temperature oxidation of the a-Si layer acting as the blocking oxide is proposed to enhance the performance of nonvolatile memory devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.2227059</identifier><language>eng</language><ispartof>Applied physics letters, 2006-07, Vol.89 (5)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c229t-4b7c4fc60303f90be6be2b9f349eb79778bb91a57dde549b2878bb47781a222f3</citedby><cites>FETCH-LOGICAL-c229t-4b7c4fc60303f90be6be2b9f349eb79778bb91a57dde549b2878bb47781a222f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tu, Chun-Hao</creatorcontrib><creatorcontrib>Chang, Ting-Chang</creatorcontrib><creatorcontrib>Liu, Po-Tsun</creatorcontrib><creatorcontrib>Liu, Hsin-Chou</creatorcontrib><creatorcontrib>Tsai, Chia-Chou</creatorcontrib><creatorcontrib>Chang, Li-Ting</creatorcontrib><creatorcontrib>Tseng, Tseung-Yuan</creatorcontrib><creatorcontrib>Sze, Simon M.</creatorcontrib><creatorcontrib>Chang, Chun-Yen</creatorcontrib><title>Formation of germanium nanocrystals embedded in silicon-oxygen-nitride layer</title><title>Applied physics letters</title><description>The formation of germanium nanocrystals embedded in silicon-oxygen nitride with distributed charge storage elements is proposed in this work. A large memory window is observed due to isolated Ge nanocrystals in the SiON gate stack layer. The Ge nanocrystals were nucleated after high temperature oxidized SiGeN layer. The nonvolatile memory with the Ge nanocrystals embedded in SiON stack layer exhibits 4V threshold voltage shift under 10V write operation. Also, the manufacture technology using the sequent high-temperature oxidation of the a-Si layer acting as the blocking oxide is proposed to enhance the performance of nonvolatile memory devices.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotUM1KxDAYDOKCddeDb5Crh6z5aZvmKIurQsGLnkuSflkibSJJBfv2ZnFPwwzDDDMI3TO6Z7QVj2zPOZe0UVeoYlRKIhjrrlFFKRWkVQ27Qbc5fxXacCEq1B9jmvXiY8DR4RMUEvzPjIMO0aY1L3rKGGYD4wgj9gFnP3kbA4m_6wkCCX5JfgQ86RXSDm1c8cPdBbfo8_j8cXgl_fvL2-GpJ5ZztZDaSFs721JBhVPUQGuAG-VErcBIJWVnjGK6kaWzqZXh3Vmpi850WefEFj3859oUc07ghu_kZ53WgdHhfMPAhssN4g_hJlAu</recordid><startdate>20060731</startdate><enddate>20060731</enddate><creator>Tu, Chun-Hao</creator><creator>Chang, Ting-Chang</creator><creator>Liu, Po-Tsun</creator><creator>Liu, Hsin-Chou</creator><creator>Tsai, Chia-Chou</creator><creator>Chang, Li-Ting</creator><creator>Tseng, Tseung-Yuan</creator><creator>Sze, Simon M.</creator><creator>Chang, Chun-Yen</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060731</creationdate><title>Formation of germanium nanocrystals embedded in silicon-oxygen-nitride layer</title><author>Tu, Chun-Hao ; Chang, Ting-Chang ; Liu, Po-Tsun ; Liu, Hsin-Chou ; Tsai, Chia-Chou ; Chang, Li-Ting ; Tseng, Tseung-Yuan ; Sze, Simon M. ; Chang, Chun-Yen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-4b7c4fc60303f90be6be2b9f349eb79778bb91a57dde549b2878bb47781a222f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Chun-Hao</creatorcontrib><creatorcontrib>Chang, Ting-Chang</creatorcontrib><creatorcontrib>Liu, Po-Tsun</creatorcontrib><creatorcontrib>Liu, Hsin-Chou</creatorcontrib><creatorcontrib>Tsai, Chia-Chou</creatorcontrib><creatorcontrib>Chang, Li-Ting</creatorcontrib><creatorcontrib>Tseng, Tseung-Yuan</creatorcontrib><creatorcontrib>Sze, Simon M.</creatorcontrib><creatorcontrib>Chang, Chun-Yen</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Chun-Hao</au><au>Chang, Ting-Chang</au><au>Liu, Po-Tsun</au><au>Liu, Hsin-Chou</au><au>Tsai, Chia-Chou</au><au>Chang, Li-Ting</au><au>Tseng, Tseung-Yuan</au><au>Sze, Simon M.</au><au>Chang, Chun-Yen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of germanium nanocrystals embedded in silicon-oxygen-nitride layer</atitle><jtitle>Applied physics letters</jtitle><date>2006-07-31</date><risdate>2006</risdate><volume>89</volume><issue>5</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>The formation of germanium nanocrystals embedded in silicon-oxygen nitride with distributed charge storage elements is proposed in this work. A large memory window is observed due to isolated Ge nanocrystals in the SiON gate stack layer. The Ge nanocrystals were nucleated after high temperature oxidized SiGeN layer. The nonvolatile memory with the Ge nanocrystals embedded in SiON stack layer exhibits 4V threshold voltage shift under 10V write operation. Also, the manufacture technology using the sequent high-temperature oxidation of the a-Si layer acting as the blocking oxide is proposed to enhance the performance of nonvolatile memory devices.</abstract><doi>10.1063/1.2227059</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2006-07, Vol.89 (5)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_2227059
source AIP Journals Complete; AIP Digital Archive
title Formation of germanium nanocrystals embedded in silicon-oxygen-nitride layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20germanium%20nanocrystals%20embedded%20in%20silicon-oxygen-nitride%20layer&rft.jtitle=Applied%20physics%20letters&rft.au=Tu,%20Chun-Hao&rft.date=2006-07-31&rft.volume=89&rft.issue=5&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.2227059&rft_dat=%3Ccrossref%3E10_1063_1_2227059%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true