Planar shock cylindrical focusing by a perfect-gas lens
We document a gas lensing technique that generates a converging shock wave in a two-dimensional wedge geometry. A successful design must satisfy three criteria at the contact point between the gas lens and the wedge leading edge to minimize nonlinear reflected and other wave effects. The result is a...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2006-03, Vol.18 (3), p.031705-031705-4 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 031705-4 |
---|---|
container_issue | 3 |
container_start_page | 031705 |
container_title | Physics of fluids (1994) |
container_volume | 18 |
creator | Dimotakis, P. E. Samtaney, R. |
description | We document a gas lensing technique that generates a converging shock wave in a two-dimensional wedge geometry. A successful design must satisfy three criteria at the contact point between the gas lens and the wedge leading edge to minimize nonlinear reflected and other wave effects. The result is a single-point solution in a multidimensional parameter space. The gas lens shape is computed using shock-polar analysis for regular refraction of the incident shock at the gas lens interface. For the range of parameters investigated, the required gas-lens interface is closely matched by an ellipse or hyperbola. Nonlinear Euler simulations confirm the analysis and that the transmitted shock is circular. As the converging transmitted shock propagates down the wedge, its shape remains nearly uniform with less than 0.1% peak departures from a perfect circular cylinder segment. Departure from the design criteria leads to converging shocks that depart from the required shape. The sensitivity to incident shock Mach number, as well as the qualitative effects of the presence of boundary layers are also discussed. |
doi_str_mv | 10.1063/1.2186553 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2186553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_2186553Planar_shock_cylindr</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-7da57cba768315d210fa823d76b5f6be82b5a8d96ed0b151453b68449e13a4613</originalsourceid><addsrcrecordid>eNqNkE1LxDAURYMoOI4u_AfZuFDomNc0SbsRZPALBnSh6_CaJmO0tiWpQv-9HTswK8XVe4tzD9xLyCmwBTDJL2GRQi6F4HtkBiwvEiWl3N_8iiVScjgkRzG-McZ4kcoZUU81NhhofG3NOzVD7ZsqeIM1da35jL5Z03KgSDsbnDV9ssZIa9vEY3LgsI72ZHvn5OX25nl5n6we7x6W16vEZFD0iapQKFOikjkHUaXAHOYpr5QshZOlzdNSYF4V0lasBAGZ4KXMs6ywwDGTwOfkfPKa0MYYrNNd8B8YBg1Mbxpr0NvGI3s2sR3GsYEL2BgfdwGlOBNCjdzVxEXje-x92_wunebRP_Po7Tyj4OLfgr_grzbsQN1Vjn8DzUmFvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Planar shock cylindrical focusing by a perfect-gas lens</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Dimotakis, P. E. ; Samtaney, R.</creator><creatorcontrib>Dimotakis, P. E. ; Samtaney, R.</creatorcontrib><description>We document a gas lensing technique that generates a converging shock wave in a two-dimensional wedge geometry. A successful design must satisfy three criteria at the contact point between the gas lens and the wedge leading edge to minimize nonlinear reflected and other wave effects. The result is a single-point solution in a multidimensional parameter space. The gas lens shape is computed using shock-polar analysis for regular refraction of the incident shock at the gas lens interface. For the range of parameters investigated, the required gas-lens interface is closely matched by an ellipse or hyperbola. Nonlinear Euler simulations confirm the analysis and that the transmitted shock is circular. As the converging transmitted shock propagates down the wedge, its shape remains nearly uniform with less than 0.1% peak departures from a perfect circular cylinder segment. Departure from the design criteria leads to converging shocks that depart from the required shape. The sensitivity to incident shock Mach number, as well as the qualitative effects of the presence of boundary layers are also discussed.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.2186553</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Compressible flows; shock and detonation phenomena ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Shock-wave interactions and shock effects ; Shock-wave interactions and shockeffects</subject><ispartof>Physics of fluids (1994), 2006-03, Vol.18 (3), p.031705-031705-4</ispartof><rights>American Institute of Physics</rights><rights>2006 American Institute of Physics</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-7da57cba768315d210fa823d76b5f6be82b5a8d96ed0b151453b68449e13a4613</citedby><cites>FETCH-LOGICAL-c419t-7da57cba768315d210fa823d76b5f6be82b5a8d96ed0b151453b68449e13a4613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1559,4512,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17730557$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dimotakis, P. E.</creatorcontrib><creatorcontrib>Samtaney, R.</creatorcontrib><title>Planar shock cylindrical focusing by a perfect-gas lens</title><title>Physics of fluids (1994)</title><description>We document a gas lensing technique that generates a converging shock wave in a two-dimensional wedge geometry. A successful design must satisfy three criteria at the contact point between the gas lens and the wedge leading edge to minimize nonlinear reflected and other wave effects. The result is a single-point solution in a multidimensional parameter space. The gas lens shape is computed using shock-polar analysis for regular refraction of the incident shock at the gas lens interface. For the range of parameters investigated, the required gas-lens interface is closely matched by an ellipse or hyperbola. Nonlinear Euler simulations confirm the analysis and that the transmitted shock is circular. As the converging transmitted shock propagates down the wedge, its shape remains nearly uniform with less than 0.1% peak departures from a perfect circular cylinder segment. Departure from the design criteria leads to converging shocks that depart from the required shape. The sensitivity to incident shock Mach number, as well as the qualitative effects of the presence of boundary layers are also discussed.</description><subject>Compressible flows; shock and detonation phenomena</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Shock-wave interactions and shock effects</subject><subject>Shock-wave interactions and shockeffects</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAURYMoOI4u_AfZuFDomNc0SbsRZPALBnSh6_CaJmO0tiWpQv-9HTswK8XVe4tzD9xLyCmwBTDJL2GRQi6F4HtkBiwvEiWl3N_8iiVScjgkRzG-McZ4kcoZUU81NhhofG3NOzVD7ZsqeIM1da35jL5Z03KgSDsbnDV9ssZIa9vEY3LgsI72ZHvn5OX25nl5n6we7x6W16vEZFD0iapQKFOikjkHUaXAHOYpr5QshZOlzdNSYF4V0lasBAGZ4KXMs6ywwDGTwOfkfPKa0MYYrNNd8B8YBg1Mbxpr0NvGI3s2sR3GsYEL2BgfdwGlOBNCjdzVxEXje-x92_wunebRP_Po7Tyj4OLfgr_grzbsQN1Vjn8DzUmFvw</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Dimotakis, P. E.</creator><creator>Samtaney, R.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060301</creationdate><title>Planar shock cylindrical focusing by a perfect-gas lens</title><author>Dimotakis, P. E. ; Samtaney, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-7da57cba768315d210fa823d76b5f6be82b5a8d96ed0b151453b68449e13a4613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Compressible flows; shock and detonation phenomena</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Shock-wave interactions and shock effects</topic><topic>Shock-wave interactions and shockeffects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimotakis, P. E.</creatorcontrib><creatorcontrib>Samtaney, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimotakis, P. E.</au><au>Samtaney, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planar shock cylindrical focusing by a perfect-gas lens</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>18</volume><issue>3</issue><spage>031705</spage><epage>031705-4</epage><pages>031705-031705-4</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We document a gas lensing technique that generates a converging shock wave in a two-dimensional wedge geometry. A successful design must satisfy three criteria at the contact point between the gas lens and the wedge leading edge to minimize nonlinear reflected and other wave effects. The result is a single-point solution in a multidimensional parameter space. The gas lens shape is computed using shock-polar analysis for regular refraction of the incident shock at the gas lens interface. For the range of parameters investigated, the required gas-lens interface is closely matched by an ellipse or hyperbola. Nonlinear Euler simulations confirm the analysis and that the transmitted shock is circular. As the converging transmitted shock propagates down the wedge, its shape remains nearly uniform with less than 0.1% peak departures from a perfect circular cylinder segment. Departure from the design criteria leads to converging shocks that depart from the required shape. The sensitivity to incident shock Mach number, as well as the qualitative effects of the presence of boundary layers are also discussed.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2186553</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2006-03, Vol.18 (3), p.031705-031705-4 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_2186553 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | Compressible flows shock and detonation phenomena Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Physics Shock-wave interactions and shock effects Shock-wave interactions and shockeffects |
title | Planar shock cylindrical focusing by a perfect-gas lens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planar%20shock%20cylindrical%20focusing%20by%20a%20perfect-gas%20lens&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Dimotakis,%20P.%20E.&rft.date=2006-03-01&rft.volume=18&rft.issue=3&rft.spage=031705&rft.epage=031705-4&rft.pages=031705-031705-4&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.2186553&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_2186553Planar_shock_cylindr%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |