Turbulent structure beneath air-water interface during natural convection

Results from an experimental study investigating the turbulent structure beneath the air-water interface during natural convection are reported. The two-dimensional velocity field beneath the surface in a plane perpendicular to the surface was measured using digital particle image velocimetry. The r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2006-03, Vol.18 (3), p.035106-035106-11
Hauptverfasser: Bukhari, Syed J. K., Siddiqui, M. H. Kamran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 035106-11
container_issue 3
container_start_page 035106
container_title Physics of fluids (1994)
container_volume 18
creator Bukhari, Syed J. K.
Siddiqui, M. H. Kamran
description Results from an experimental study investigating the turbulent structure beneath the air-water interface during natural convection are reported. The two-dimensional velocity field beneath the surface in a plane perpendicular to the surface was measured using digital particle image velocimetry. The results show that the waterside flow field undergoes three-dimensional flow interactions forming complex flow patterns, which appear to be random. The magnitude of the turbulent velocities and turbulent kinetic energy increases with the heat flux. The profiles of the turbulent velocities are self-similar and appropriately scaled by the parameters proposed for the natural convection above a heated wall. The wave number and frequency spectra exhibit − 3 slopes providing the evidence that during natural convection the buoyancy subrange exists within the inertial subrange where the energy loss is due to the work against buoyancy.
doi_str_mv 10.1063/1.2185709
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2185709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_2185709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-7cc40f9d7581364668d4911e3aa5eac025c21bd98687ac2d7696e4f2a7e2782d3</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMoWKsL32A2LhSm5jKTy8KFFC-Fgpu6DqeZRCNjpiSZim_vlJZ2pbg55yy-_4fzIXRJ8IRgzm7JhBJZC6yO0IhgqUrBOT_e3AKXnDNyis5S-sAYM0X5CM0WfVz2rQ25SDn2JvfRFksbLOT3AnwsvyDbWPgwTAfGFk0ffXgrAgwktIXpwtqa7Ltwjk4ctMle7PYYvT4-LKbP5fzlaTa9n5emIjKXwpgKO9WIWhLGK85lUylCLAOoLRhMa0PJslGSSwGGNoIrbitHQVgqJG3YGF1ve03sUorW6VX0nxC_NcF640ATvXMwsFdbdgXJQOsiBOPTISAEw7XEA3e35ZLxGTbf_F66F6b3wob8zb_zf8HrLh5AvWoc-wGYsY24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Turbulent structure beneath air-water interface during natural convection</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Bukhari, Syed J. K. ; Siddiqui, M. H. Kamran</creator><creatorcontrib>Bukhari, Syed J. K. ; Siddiqui, M. H. Kamran</creatorcontrib><description>Results from an experimental study investigating the turbulent structure beneath the air-water interface during natural convection are reported. The two-dimensional velocity field beneath the surface in a plane perpendicular to the surface was measured using digital particle image velocimetry. The results show that the waterside flow field undergoes three-dimensional flow interactions forming complex flow patterns, which appear to be random. The magnitude of the turbulent velocities and turbulent kinetic energy increases with the heat flux. The profiles of the turbulent velocities are self-similar and appropriately scaled by the parameters proposed for the natural convection above a heated wall. The wave number and frequency spectra exhibit − 3 slopes providing the evidence that during natural convection the buoyancy subrange exists within the inertial subrange where the energy loss is due to the work against buoyancy.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.2185709</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Applied sciences ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat transfer ; Theoretical studies. Data and constants. Metering</subject><ispartof>Physics of fluids (1994), 2006-03, Vol.18 (3), p.035106-035106-11</ispartof><rights>American Institute of Physics</rights><rights>2006 American Institute of Physics</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-7cc40f9d7581364668d4911e3aa5eac025c21bd98687ac2d7696e4f2a7e2782d3</citedby><cites>FETCH-LOGICAL-c418t-7cc40f9d7581364668d4911e3aa5eac025c21bd98687ac2d7696e4f2a7e2782d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4497,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17730580$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bukhari, Syed J. K.</creatorcontrib><creatorcontrib>Siddiqui, M. H. Kamran</creatorcontrib><title>Turbulent structure beneath air-water interface during natural convection</title><title>Physics of fluids (1994)</title><description>Results from an experimental study investigating the turbulent structure beneath the air-water interface during natural convection are reported. The two-dimensional velocity field beneath the surface in a plane perpendicular to the surface was measured using digital particle image velocimetry. The results show that the waterside flow field undergoes three-dimensional flow interactions forming complex flow patterns, which appear to be random. The magnitude of the turbulent velocities and turbulent kinetic energy increases with the heat flux. The profiles of the turbulent velocities are self-similar and appropriately scaled by the parameters proposed for the natural convection above a heated wall. The wave number and frequency spectra exhibit − 3 slopes providing the evidence that during natural convection the buoyancy subrange exists within the inertial subrange where the energy loss is due to the work against buoyancy.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKAzEUhoMoWKsL32A2LhSm5jKTy8KFFC-Fgpu6DqeZRCNjpiSZim_vlJZ2pbg55yy-_4fzIXRJ8IRgzm7JhBJZC6yO0IhgqUrBOT_e3AKXnDNyis5S-sAYM0X5CM0WfVz2rQ25SDn2JvfRFksbLOT3AnwsvyDbWPgwTAfGFk0ffXgrAgwktIXpwtqa7Ltwjk4ctMle7PYYvT4-LKbP5fzlaTa9n5emIjKXwpgKO9WIWhLGK85lUylCLAOoLRhMa0PJslGSSwGGNoIrbitHQVgqJG3YGF1ve03sUorW6VX0nxC_NcF640ATvXMwsFdbdgXJQOsiBOPTISAEw7XEA3e35ZLxGTbf_F66F6b3wob8zb_zf8HrLh5AvWoc-wGYsY24</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Bukhari, Syed J. K.</creator><creator>Siddiqui, M. H. Kamran</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060301</creationdate><title>Turbulent structure beneath air-water interface during natural convection</title><author>Bukhari, Syed J. K. ; Siddiqui, M. H. Kamran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-7cc40f9d7581364668d4911e3aa5eac025c21bd98687ac2d7696e4f2a7e2782d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bukhari, Syed J. K.</creatorcontrib><creatorcontrib>Siddiqui, M. H. Kamran</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bukhari, Syed J. K.</au><au>Siddiqui, M. H. Kamran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent structure beneath air-water interface during natural convection</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>18</volume><issue>3</issue><spage>035106</spage><epage>035106-11</epage><pages>035106-035106-11</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Results from an experimental study investigating the turbulent structure beneath the air-water interface during natural convection are reported. The two-dimensional velocity field beneath the surface in a plane perpendicular to the surface was measured using digital particle image velocimetry. The results show that the waterside flow field undergoes three-dimensional flow interactions forming complex flow patterns, which appear to be random. The magnitude of the turbulent velocities and turbulent kinetic energy increases with the heat flux. The profiles of the turbulent velocities are self-similar and appropriately scaled by the parameters proposed for the natural convection above a heated wall. The wave number and frequency spectra exhibit − 3 slopes providing the evidence that during natural convection the buoyancy subrange exists within the inertial subrange where the energy loss is due to the work against buoyancy.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2185709</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2006-03, Vol.18 (3), p.035106-035106-11
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_2185709
source AIP Journals Complete; AIP Digital Archive
subjects Applied sciences
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heat transfer
Theoretical studies. Data and constants. Metering
title Turbulent structure beneath air-water interface during natural convection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20structure%20beneath%20air-water%20interface%20during%20natural%20convection&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Bukhari,%20Syed%20J.%20K.&rft.date=2006-03-01&rft.volume=18&rft.issue=3&rft.spage=035106&rft.epage=035106-11&rft.pages=035106-035106-11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.2185709&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_2185709%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true