Analytical integrability and physical solutions of d - KdV equation

A new idea of electron inertia-induced ion sound wave excitation for transonic plasma equilibrium has already been reported. In such unstable plasma equilibrium, a linear source driven Korteweg-de Vries ( d - KdV ) equation describes the nonlinear ion sound wave propagation behavior. By numerical te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2006-03, Vol.47 (3), p.032901-032901-17
Hauptverfasser: Karmakar, P. K., Dwivedi, C. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 032901-17
container_issue 3
container_start_page 032901
container_title Journal of mathematical physics
container_volume 47
creator Karmakar, P. K.
Dwivedi, C. B.
description A new idea of electron inertia-induced ion sound wave excitation for transonic plasma equilibrium has already been reported. In such unstable plasma equilibrium, a linear source driven Korteweg-de Vries ( d - KdV ) equation describes the nonlinear ion sound wave propagation behavior. By numerical techniques, two distinct classes of solution (soliton and oscillatory shocklike structures) are obtained. Present contribution deals with the systematic methodological efforts to find out its ( d - KdV ) analytical solutions. As a first step, we apply the Painleve method to test whether the derived d - KdV equation is analytically integrable or not. We find that the derived d - KdV equation is indeed analytically integrable since it satisfies Painleve property. Hirota’s bilinearization method and the modified sine-Gordon method (also termed as sine-cosine method) are used to derive the analytical results. Perturbative technique is also applied to find out quasistationary solutions. A few graphical plots are provided to offer a glimpse of the structural profiles obtained by different methods applied. It is conjectured that these solutions may open a new scope of acoustic spectroscopy in plasma hydrodynamics.
doi_str_mv 10.1063/1.2173087
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2173087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1033214641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-1d98eee0bdd9476b145785f79167c272dd235cf01c2b43570f2838bad45caa873</originalsourceid><addsrcrecordid>eNqNkE9PwyAcQInRxDk9-A0ajQdNqkBpoReTZfFfXOJFvRIK1LHUsgE16beXrYs7aTyRwOPx4wFwiuA1gkV2g64xohlkdA-MEGRlSouc7YMRhBinmDB2CI68X0CIECNkBKaTVjR9MFI0iWmD_nCiMo0JfSJalSznvd8cedt0wdjWJ7ZOVJImz-o90atOrDePwUEtGq9PtusYvN3fvU4f09nLw9N0MkslycqQIlUyrTWslCoJLSpEcsrympaooBJTrBTOcllDJHFFspzCGrOMVUKRXArBaDYG54PX-mC4lyZoOZe2bbUMHENaMEpQpM4GaunsqtM-8IXtXPyl5xjlBY7PsghdDpB01nuna7505lO4niPI1yE54tuQkb3YCoWPLWonWmn87gKleeRg5G4Hbj3ZJszv0l11_lM9Cq7-LfgL_rJuB_KlqrNvMYmhsA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215621458</pqid></control><display><type>article</type><title>Analytical integrability and physical solutions of d - KdV equation</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Karmakar, P. K. ; Dwivedi, C. B.</creator><creatorcontrib>Karmakar, P. K. ; Dwivedi, C. B.</creatorcontrib><description>A new idea of electron inertia-induced ion sound wave excitation for transonic plasma equilibrium has already been reported. In such unstable plasma equilibrium, a linear source driven Korteweg-de Vries ( d - KdV ) equation describes the nonlinear ion sound wave propagation behavior. By numerical techniques, two distinct classes of solution (soliton and oscillatory shocklike structures) are obtained. Present contribution deals with the systematic methodological efforts to find out its ( d - KdV ) analytical solutions. As a first step, we apply the Painleve method to test whether the derived d - KdV equation is analytically integrable or not. We find that the derived d - KdV equation is indeed analytically integrable since it satisfies Painleve property. Hirota’s bilinearization method and the modified sine-Gordon method (also termed as sine-cosine method) are used to derive the analytical results. Perturbative technique is also applied to find out quasistationary solutions. A few graphical plots are provided to offer a glimpse of the structural profiles obtained by different methods applied. It is conjectured that these solutions may open a new scope of acoustic spectroscopy in plasma hydrodynamics.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.2173087</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>ANALYTICAL SOLUTION ; Atoms &amp; subatomic particles ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; ELECTRONS ; EQUILIBRIUM ; Exact sciences and technology ; EXCITATION ; HYDRODYNAMICS ; INTEGRAL CALCULUS ; ION ACOUSTIC WAVES ; KORTEWEG-DE VRIES EQUATION ; Mathematical methods in physics ; Mathematics ; MOMENT OF INERTIA ; Nonlinear equations ; NONLINEAR PROBLEMS ; Physics ; PLASMA ; Sciences and techniques of general use ; SINE-GORDON EQUATION ; SOLITONS ; SOUND WAVES ; SPECTROSCOPY</subject><ispartof>Journal of mathematical physics, 2006-03, Vol.47 (3), p.032901-032901-17</ispartof><rights>American Institute of Physics</rights><rights>2006 American Institute of Physics</rights><rights>2006 INIST-CNRS</rights><rights>Copyright American Institute of Physics Mar 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-1d98eee0bdd9476b145785f79167c272dd235cf01c2b43570f2838bad45caa873</citedby><cites>FETCH-LOGICAL-c439t-1d98eee0bdd9476b145785f79167c272dd235cf01c2b43570f2838bad45caa873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.2173087$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,1559,4512,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17753080$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20768741$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Karmakar, P. K.</creatorcontrib><creatorcontrib>Dwivedi, C. B.</creatorcontrib><title>Analytical integrability and physical solutions of d - KdV equation</title><title>Journal of mathematical physics</title><description>A new idea of electron inertia-induced ion sound wave excitation for transonic plasma equilibrium has already been reported. In such unstable plasma equilibrium, a linear source driven Korteweg-de Vries ( d - KdV ) equation describes the nonlinear ion sound wave propagation behavior. By numerical techniques, two distinct classes of solution (soliton and oscillatory shocklike structures) are obtained. Present contribution deals with the systematic methodological efforts to find out its ( d - KdV ) analytical solutions. As a first step, we apply the Painleve method to test whether the derived d - KdV equation is analytically integrable or not. We find that the derived d - KdV equation is indeed analytically integrable since it satisfies Painleve property. Hirota’s bilinearization method and the modified sine-Gordon method (also termed as sine-cosine method) are used to derive the analytical results. Perturbative technique is also applied to find out quasistationary solutions. A few graphical plots are provided to offer a glimpse of the structural profiles obtained by different methods applied. It is conjectured that these solutions may open a new scope of acoustic spectroscopy in plasma hydrodynamics.</description><subject>ANALYTICAL SOLUTION</subject><subject>Atoms &amp; subatomic particles</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>ELECTRONS</subject><subject>EQUILIBRIUM</subject><subject>Exact sciences and technology</subject><subject>EXCITATION</subject><subject>HYDRODYNAMICS</subject><subject>INTEGRAL CALCULUS</subject><subject>ION ACOUSTIC WAVES</subject><subject>KORTEWEG-DE VRIES EQUATION</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>MOMENT OF INERTIA</subject><subject>Nonlinear equations</subject><subject>NONLINEAR PROBLEMS</subject><subject>Physics</subject><subject>PLASMA</subject><subject>Sciences and techniques of general use</subject><subject>SINE-GORDON EQUATION</subject><subject>SOLITONS</subject><subject>SOUND WAVES</subject><subject>SPECTROSCOPY</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PwyAcQInRxDk9-A0ajQdNqkBpoReTZfFfXOJFvRIK1LHUsgE16beXrYs7aTyRwOPx4wFwiuA1gkV2g64xohlkdA-MEGRlSouc7YMRhBinmDB2CI68X0CIECNkBKaTVjR9MFI0iWmD_nCiMo0JfSJalSznvd8cedt0wdjWJ7ZOVJImz-o90atOrDePwUEtGq9PtusYvN3fvU4f09nLw9N0MkslycqQIlUyrTWslCoJLSpEcsrympaooBJTrBTOcllDJHFFspzCGrOMVUKRXArBaDYG54PX-mC4lyZoOZe2bbUMHENaMEpQpM4GaunsqtM-8IXtXPyl5xjlBY7PsghdDpB01nuna7505lO4niPI1yE54tuQkb3YCoWPLWonWmn87gKleeRg5G4Hbj3ZJszv0l11_lM9Cq7-LfgL_rJuB_KlqrNvMYmhsA</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Karmakar, P. K.</creator><creator>Dwivedi, C. B.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20060301</creationdate><title>Analytical integrability and physical solutions of d - KdV equation</title><author>Karmakar, P. K. ; Dwivedi, C. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-1d98eee0bdd9476b145785f79167c272dd235cf01c2b43570f2838bad45caa873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ANALYTICAL SOLUTION</topic><topic>Atoms &amp; subatomic particles</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>ELECTRONS</topic><topic>EQUILIBRIUM</topic><topic>Exact sciences and technology</topic><topic>EXCITATION</topic><topic>HYDRODYNAMICS</topic><topic>INTEGRAL CALCULUS</topic><topic>ION ACOUSTIC WAVES</topic><topic>KORTEWEG-DE VRIES EQUATION</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>MOMENT OF INERTIA</topic><topic>Nonlinear equations</topic><topic>NONLINEAR PROBLEMS</topic><topic>Physics</topic><topic>PLASMA</topic><topic>Sciences and techniques of general use</topic><topic>SINE-GORDON EQUATION</topic><topic>SOLITONS</topic><topic>SOUND WAVES</topic><topic>SPECTROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karmakar, P. K.</creatorcontrib><creatorcontrib>Dwivedi, C. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karmakar, P. K.</au><au>Dwivedi, C. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical integrability and physical solutions of d - KdV equation</atitle><jtitle>Journal of mathematical physics</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>47</volume><issue>3</issue><spage>032901</spage><epage>032901-17</epage><pages>032901-032901-17</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A new idea of electron inertia-induced ion sound wave excitation for transonic plasma equilibrium has already been reported. In such unstable plasma equilibrium, a linear source driven Korteweg-de Vries ( d - KdV ) equation describes the nonlinear ion sound wave propagation behavior. By numerical techniques, two distinct classes of solution (soliton and oscillatory shocklike structures) are obtained. Present contribution deals with the systematic methodological efforts to find out its ( d - KdV ) analytical solutions. As a first step, we apply the Painleve method to test whether the derived d - KdV equation is analytically integrable or not. We find that the derived d - KdV equation is indeed analytically integrable since it satisfies Painleve property. Hirota’s bilinearization method and the modified sine-Gordon method (also termed as sine-cosine method) are used to derive the analytical results. Perturbative technique is also applied to find out quasistationary solutions. A few graphical plots are provided to offer a glimpse of the structural profiles obtained by different methods applied. It is conjectured that these solutions may open a new scope of acoustic spectroscopy in plasma hydrodynamics.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2173087</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2006-03, Vol.47 (3), p.032901-032901-17
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_2173087
source AIP Journals Complete; AIP Digital Archive
subjects ANALYTICAL SOLUTION
Atoms & subatomic particles
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
ELECTRONS
EQUILIBRIUM
Exact sciences and technology
EXCITATION
HYDRODYNAMICS
INTEGRAL CALCULUS
ION ACOUSTIC WAVES
KORTEWEG-DE VRIES EQUATION
Mathematical methods in physics
Mathematics
MOMENT OF INERTIA
Nonlinear equations
NONLINEAR PROBLEMS
Physics
PLASMA
Sciences and techniques of general use
SINE-GORDON EQUATION
SOLITONS
SOUND WAVES
SPECTROSCOPY
title Analytical integrability and physical solutions of d - KdV equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20integrability%20and%20physical%20solutions%20of%20d%20-%20KdV%20equation&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Karmakar,%20P.%20K.&rft.date=2006-03-01&rft.volume=47&rft.issue=3&rft.spage=032901&rft.epage=032901-17&rft.pages=032901-032901-17&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.2173087&rft_dat=%3Cproquest_cross%3E1033214641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215621458&rft_id=info:pmid/&rfr_iscdi=true