Intersubband photoconductivity at 1.6 μ m using a strain-compensated AlN ∕ GaN superlattice
We report on intersubband absorption, photovoltaic, and photoconductive detection of near-infrared radiation in regular AlN ∕ GaN superlattice structures. Photoconductive detection was achieved up to temperatures of 120 K. Simulation of the transition energies using a self-consistent Schrödinger-Poi...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2005-11, Vol.87 (19), p.191102-191102-3 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191102-3 |
---|---|
container_issue | 19 |
container_start_page | 191102 |
container_title | Applied physics letters |
container_volume | 87 |
creator | Baumann, E. Giorgetta, F. R. Hofstetter, D. Lu, H. Chen, X. Schaff, W. J. Eastman, L. F. Golka, S. Schrenk, W. Strasser, G. |
description | We report on intersubband absorption, photovoltaic, and photoconductive detection of near-infrared radiation in regular
AlN
∕
GaN
superlattice structures. Photoconductive detection was achieved up to temperatures of 120 K. Simulation of the transition energies using a self-consistent Schrödinger-Poisson equation solver for our specific well width is in good agreement with the measurements. For a well width of 17 Å, the transition energy between ground state and first excited state in the GaN well is around
6300
cm
−
1
which corresponds to
1.6
μ
m
. |
doi_str_mv | 10.1063/1.2126130 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2126130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-2a33ef42f97a4a97a51396c5df9120dcca4dc1d39d0e48a654e15dd67fd2e3993</originalsourceid><addsrcrecordid>eNp1kEFKAzEYhYMoWKsLb5CtixnzJzOZZiOUorVQ6ka3Dn-TjEbazJBkhN7AC3ibnsFDeBIr7cKNm_d48PEWHyGXwHJgUlxDzoFLEOyIDIBVVSYARsdkwBgTmVQlnJKzGN92s-RCDMjzzCcbYr9coje0e21Tq1tvep3cu0sbiolCLunXlq5pH51_oUhjCuh8ptt1Z33EZA0drxb0--OTTnFBY9_ZsMKUnLbn5KTBVbQXhx6Sp7vbx8l9Nn-Yzibjeab5qEgZRyFsU_BGVVjgLkoQSurSNAo4M1pjYTQYoQyzxQhlWVgojZFVY7gVSokhudr_6tDGGGxTd8GtMWxqYPWvmBrqg5gde7Nno3YJk2v9__BfO_XBjvgBnz5s5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intersubband photoconductivity at 1.6 μ m using a strain-compensated AlN ∕ GaN superlattice</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Baumann, E. ; Giorgetta, F. R. ; Hofstetter, D. ; Lu, H. ; Chen, X. ; Schaff, W. J. ; Eastman, L. F. ; Golka, S. ; Schrenk, W. ; Strasser, G.</creator><creatorcontrib>Baumann, E. ; Giorgetta, F. R. ; Hofstetter, D. ; Lu, H. ; Chen, X. ; Schaff, W. J. ; Eastman, L. F. ; Golka, S. ; Schrenk, W. ; Strasser, G.</creatorcontrib><description>We report on intersubband absorption, photovoltaic, and photoconductive detection of near-infrared radiation in regular
AlN
∕
GaN
superlattice structures. Photoconductive detection was achieved up to temperatures of 120 K. Simulation of the transition energies using a self-consistent Schrödinger-Poisson equation solver for our specific well width is in good agreement with the measurements. For a well width of 17 Å, the transition energy between ground state and first excited state in the GaN well is around
6300
cm
−
1
which corresponds to
1.6
μ
m
.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.2126130</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2005-11, Vol.87 (19), p.191102-191102-3</ispartof><rights>2005 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-2a33ef42f97a4a97a51396c5df9120dcca4dc1d39d0e48a654e15dd67fd2e3993</citedby><cites>FETCH-LOGICAL-c284t-2a33ef42f97a4a97a51396c5df9120dcca4dc1d39d0e48a654e15dd67fd2e3993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.2126130$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,1560,4513,27929,27930,76389,76395</link.rule.ids></links><search><creatorcontrib>Baumann, E.</creatorcontrib><creatorcontrib>Giorgetta, F. R.</creatorcontrib><creatorcontrib>Hofstetter, D.</creatorcontrib><creatorcontrib>Lu, H.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Schaff, W. J.</creatorcontrib><creatorcontrib>Eastman, L. F.</creatorcontrib><creatorcontrib>Golka, S.</creatorcontrib><creatorcontrib>Schrenk, W.</creatorcontrib><creatorcontrib>Strasser, G.</creatorcontrib><title>Intersubband photoconductivity at 1.6 μ m using a strain-compensated AlN ∕ GaN superlattice</title><title>Applied physics letters</title><description>We report on intersubband absorption, photovoltaic, and photoconductive detection of near-infrared radiation in regular
AlN
∕
GaN
superlattice structures. Photoconductive detection was achieved up to temperatures of 120 K. Simulation of the transition energies using a self-consistent Schrödinger-Poisson equation solver for our specific well width is in good agreement with the measurements. For a well width of 17 Å, the transition energy between ground state and first excited state in the GaN well is around
6300
cm
−
1
which corresponds to
1.6
μ
m
.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kEFKAzEYhYMoWKsLb5CtixnzJzOZZiOUorVQ6ka3Dn-TjEbazJBkhN7AC3ibnsFDeBIr7cKNm_d48PEWHyGXwHJgUlxDzoFLEOyIDIBVVSYARsdkwBgTmVQlnJKzGN92s-RCDMjzzCcbYr9coje0e21Tq1tvep3cu0sbiolCLunXlq5pH51_oUhjCuh8ptt1Z33EZA0drxb0--OTTnFBY9_ZsMKUnLbn5KTBVbQXhx6Sp7vbx8l9Nn-Yzibjeab5qEgZRyFsU_BGVVjgLkoQSurSNAo4M1pjYTQYoQyzxQhlWVgojZFVY7gVSokhudr_6tDGGGxTd8GtMWxqYPWvmBrqg5gde7Nno3YJk2v9__BfO_XBjvgBnz5s5A</recordid><startdate>20051107</startdate><enddate>20051107</enddate><creator>Baumann, E.</creator><creator>Giorgetta, F. R.</creator><creator>Hofstetter, D.</creator><creator>Lu, H.</creator><creator>Chen, X.</creator><creator>Schaff, W. J.</creator><creator>Eastman, L. F.</creator><creator>Golka, S.</creator><creator>Schrenk, W.</creator><creator>Strasser, G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051107</creationdate><title>Intersubband photoconductivity at 1.6 μ m using a strain-compensated AlN ∕ GaN superlattice</title><author>Baumann, E. ; Giorgetta, F. R. ; Hofstetter, D. ; Lu, H. ; Chen, X. ; Schaff, W. J. ; Eastman, L. F. ; Golka, S. ; Schrenk, W. ; Strasser, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-2a33ef42f97a4a97a51396c5df9120dcca4dc1d39d0e48a654e15dd67fd2e3993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baumann, E.</creatorcontrib><creatorcontrib>Giorgetta, F. R.</creatorcontrib><creatorcontrib>Hofstetter, D.</creatorcontrib><creatorcontrib>Lu, H.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Schaff, W. J.</creatorcontrib><creatorcontrib>Eastman, L. F.</creatorcontrib><creatorcontrib>Golka, S.</creatorcontrib><creatorcontrib>Schrenk, W.</creatorcontrib><creatorcontrib>Strasser, G.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baumann, E.</au><au>Giorgetta, F. R.</au><au>Hofstetter, D.</au><au>Lu, H.</au><au>Chen, X.</au><au>Schaff, W. J.</au><au>Eastman, L. F.</au><au>Golka, S.</au><au>Schrenk, W.</au><au>Strasser, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intersubband photoconductivity at 1.6 μ m using a strain-compensated AlN ∕ GaN superlattice</atitle><jtitle>Applied physics letters</jtitle><date>2005-11-07</date><risdate>2005</risdate><volume>87</volume><issue>19</issue><spage>191102</spage><epage>191102-3</epage><pages>191102-191102-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We report on intersubband absorption, photovoltaic, and photoconductive detection of near-infrared radiation in regular
AlN
∕
GaN
superlattice structures. Photoconductive detection was achieved up to temperatures of 120 K. Simulation of the transition energies using a self-consistent Schrödinger-Poisson equation solver for our specific well width is in good agreement with the measurements. For a well width of 17 Å, the transition energy between ground state and first excited state in the GaN well is around
6300
cm
−
1
which corresponds to
1.6
μ
m
.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2126130</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2005-11, Vol.87 (19), p.191102-191102-3 |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_2126130 |
source | AIP Journals Complete; AIP Digital Archive |
title | Intersubband photoconductivity at 1.6 μ m using a strain-compensated AlN ∕ GaN superlattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intersubband%20photoconductivity%20at%201.6%20%CE%BC%20m%20using%20a%20strain-compensated%20AlN%20%E2%88%95%20GaN%20superlattice&rft.jtitle=Applied%20physics%20letters&rft.au=Baumann,%20E.&rft.date=2005-11-07&rft.volume=87&rft.issue=19&rft.spage=191102&rft.epage=191102-3&rft.pages=191102-191102-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.2126130&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |