Evolution of zero-mean magnetic fields in cellular flows
This paper presents the results of numerical simulations to examine the evolution of a zero-mean magnetic field in a steady cellular flow. In the kinematic model the evolution consists of two phases. In general, the time scale for decay in these two phases are those presented by Rhines and Young [“H...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2005-10, Vol.17 (10), p.103604-103604-7 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103604-7 |
---|---|
container_issue | 10 |
container_start_page | 103604 |
container_title | Physics of fluids (1994) |
container_volume | 17 |
creator | Silvers, L. J. |
description | This paper presents the results of numerical simulations to examine the evolution of a zero-mean magnetic field in a steady cellular flow. In the kinematic model the evolution consists of two phases. In general, the time scale for decay in these two phases are those presented by Rhines and Young [“How rapidly is a passive scalar mixed within closed streamlines,” J. Fluid Mech.
133, 135 (1983)]. However, we show that there is a case for which the magnetic energy does not decay on these time scales. In the dynamic model, the evolution is dependent on the strength of the imposed field. For weak fields, the evolution can be satisfactorily approximated by that for the kinematic model. However, as the field strength is increased the approximation ceases to be valid. For stronger fields, there are three primary phases to the decay. For such fields there is an additional phase, in between those for the kinematic model, where the field decays at the ohmic rate. |
doi_str_mv | 10.1063/1.2084247 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2084247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_2084247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-67ba9f90369cf4e031a4bd1ce19f35e3f67f13cc0001b5a51f637dadd436bd233</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFYP_oNcPCik7mTSTXIRpNQPKHjR87LZD1nZZMtuWtFfb0KKPUg9zRye92HeIeQS6Awow1uYZbTMs7w4IhOgZZUWjLHjYS9oyhjCKTmL8YNSilXGJqRcbr3bdNa3iTfJtw4-bbRok0a8t7qzMjFWOxUT2yZSO7dxIiTG-c94Tk6McFFf7OaUvD0sXxdP6erl8Xlxv0ollnmXsqIWlakoskqaXFMEkdcKpIbK4FyjYYUBlLI_COq5mINhWCihVI6sVhnilFyPXhl8jEEbvg62EeGLA-VDZQ58V7lnr0Z2LaIUzgTRShv3gQIRcgo9dzdyUdpODOUPS3__w73hw394o3vBzSHB1od9mK-V-Q_-W-EHpR6HDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evolution of zero-mean magnetic fields in cellular flows</title><source>American Institute of Physics (AIP) Journals</source><source>AIP Digital Archive</source><creator>Silvers, L. J.</creator><creatorcontrib>Silvers, L. J.</creatorcontrib><description>This paper presents the results of numerical simulations to examine the evolution of a zero-mean magnetic field in a steady cellular flow. In the kinematic model the evolution consists of two phases. In general, the time scale for decay in these two phases are those presented by Rhines and Young [“How rapidly is a passive scalar mixed within closed streamlines,” J. Fluid Mech.
133, 135 (1983)]. However, we show that there is a case for which the magnetic energy does not decay on these time scales. In the dynamic model, the evolution is dependent on the strength of the imposed field. For weak fields, the evolution can be satisfactorily approximated by that for the kinematic model. However, as the field strength is increased the approximation ceases to be valid. For stronger fields, there are three primary phases to the decay. For such fields there is an additional phase, in between those for the kinematic model, where the field decays at the ohmic rate.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.2084247</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology ; Fundamental aspects of astrophysics ; Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations ; Magnetohydrodynamics and plasmas</subject><ispartof>Physics of fluids (1994), 2005-10, Vol.17 (10), p.103604-103604-7</ispartof><rights>American Institute of Physics</rights><rights>2005 American Institute of Physics</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-67ba9f90369cf4e031a4bd1ce19f35e3f67f13cc0001b5a51f637dadd436bd233</citedby><cites>FETCH-LOGICAL-c384t-67ba9f90369cf4e031a4bd1ce19f35e3f67f13cc0001b5a51f637dadd436bd233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17331401$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Silvers, L. J.</creatorcontrib><title>Evolution of zero-mean magnetic fields in cellular flows</title><title>Physics of fluids (1994)</title><description>This paper presents the results of numerical simulations to examine the evolution of a zero-mean magnetic field in a steady cellular flow. In the kinematic model the evolution consists of two phases. In general, the time scale for decay in these two phases are those presented by Rhines and Young [“How rapidly is a passive scalar mixed within closed streamlines,” J. Fluid Mech.
133, 135 (1983)]. However, we show that there is a case for which the magnetic energy does not decay on these time scales. In the dynamic model, the evolution is dependent on the strength of the imposed field. For weak fields, the evolution can be satisfactorily approximated by that for the kinematic model. However, as the field strength is increased the approximation ceases to be valid. For stronger fields, there are three primary phases to the decay. For such fields there is an additional phase, in between those for the kinematic model, where the field decays at the ohmic rate.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental aspects of astrophysics</subject><subject>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</subject><subject>Magnetohydrodynamics and plasmas</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFYP_oNcPCik7mTSTXIRpNQPKHjR87LZD1nZZMtuWtFfb0KKPUg9zRye92HeIeQS6Awow1uYZbTMs7w4IhOgZZUWjLHjYS9oyhjCKTmL8YNSilXGJqRcbr3bdNa3iTfJtw4-bbRok0a8t7qzMjFWOxUT2yZSO7dxIiTG-c94Tk6McFFf7OaUvD0sXxdP6erl8Xlxv0ollnmXsqIWlakoskqaXFMEkdcKpIbK4FyjYYUBlLI_COq5mINhWCihVI6sVhnilFyPXhl8jEEbvg62EeGLA-VDZQ58V7lnr0Z2LaIUzgTRShv3gQIRcgo9dzdyUdpODOUPS3__w73hw394o3vBzSHB1od9mK-V-Q_-W-EHpR6HDQ</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Silvers, L. J.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051001</creationdate><title>Evolution of zero-mean magnetic fields in cellular flows</title><author>Silvers, L. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-67ba9f90369cf4e031a4bd1ce19f35e3f67f13cc0001b5a51f637dadd436bd233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental aspects of astrophysics</topic><topic>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</topic><topic>Magnetohydrodynamics and plasmas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silvers, L. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silvers, L. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of zero-mean magnetic fields in cellular flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>17</volume><issue>10</issue><spage>103604</spage><epage>103604-7</epage><pages>103604-103604-7</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This paper presents the results of numerical simulations to examine the evolution of a zero-mean magnetic field in a steady cellular flow. In the kinematic model the evolution consists of two phases. In general, the time scale for decay in these two phases are those presented by Rhines and Young [“How rapidly is a passive scalar mixed within closed streamlines,” J. Fluid Mech.
133, 135 (1983)]. However, we show that there is a case for which the magnetic energy does not decay on these time scales. In the dynamic model, the evolution is dependent on the strength of the imposed field. For weak fields, the evolution can be satisfactorily approximated by that for the kinematic model. However, as the field strength is increased the approximation ceases to be valid. For stronger fields, there are three primary phases to the decay. For such fields there is an additional phase, in between those for the kinematic model, where the field decays at the ohmic rate.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2084247</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2005-10, Vol.17 (10), p.103604-103604-7 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_2084247 |
source | American Institute of Physics (AIP) Journals; AIP Digital Archive |
subjects | Astronomy Earth, ocean, space Exact sciences and technology Fundamental aspects of astrophysics Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations Magnetohydrodynamics and plasmas |
title | Evolution of zero-mean magnetic fields in cellular flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20zero-mean%20magnetic%20fields%20in%20cellular%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Silvers,%20L.%20J.&rft.date=2005-10-01&rft.volume=17&rft.issue=10&rft.spage=103604&rft.epage=103604-7&rft.pages=103604-103604-7&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.2084247&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_2084247%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |