Control of the natural frequency of the (2,0) mode of liquid bridges using active electrostatic fields

We demonstrate that active stiffening of a capillary bridge through the application of an appropriate Maxwell stress projection can be used to raise the frequency of bridge oscillations. The stress projection is proportional to the mode amplitude. This approach may be useful for suppressing the resp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2005-07, Vol.17 (7), p.071702-071702-4
Hauptverfasser: Wei, Wei, Thiessen, David B., Marston, Philip L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 071702-4
container_issue 7
container_start_page 071702
container_title Physics of fluids (1994)
container_volume 17
creator Wei, Wei
Thiessen, David B.
Marston, Philip L.
description We demonstrate that active stiffening of a capillary bridge through the application of an appropriate Maxwell stress projection can be used to raise the frequency of bridge oscillations. The stress projection is proportional to the mode amplitude. This approach may be useful for suppressing the response of capillary systems to ambient vibrations. The amount of stiffening has a simple dependence on a dimensionless gain and it also depends on the slenderness of the bridge. Using a Plateau tank, we demonstrate a simple method for inferring the dimensionless gain.
doi_str_mv 10.1063/1.1978947
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1978947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1978947Control_of_the_natur</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-adac70bc886377cf1dfd3aa140372d8949a68bdb569146ca555cef844c3400be3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKsH_0EughW3TprdZPcilOIXFLzoOWTzUSPb3TbZLfTfm7WVnhRPGTLPvMw8CF0SGBNg9I6MScHzIuVHaEAgLxLOGDvuaw4JY5ScorMQPgGAFhM2QHbW1K1vKtxY3H4YXMu287LC1pt1Z2q1_WlcT25hhJeNNv1P5dad07j0Ti9MwF1w9QJL1bqNwaYyKkaGVrZOYetMpcM5OrGyCuZi_w7R--PD2-w5mb8-vcym80TRPG0TqaXiUKo8Z5RzZYm2mkpJUqB8ouNZhWR5qcuMFSRlSmZZpozN01TRFKA0dIhGu1wVFwjeWLHybin9VhAQvSBBxF5QZK927EoGJSvrZa1cOAxwgDgBkbvfcUG5_qam_j10b1M0VkRp4ttmDLj5d8Bf8KbxB1CstKVfK0CXgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Control of the natural frequency of the (2,0) mode of liquid bridges using active electrostatic fields</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Wei, Wei ; Thiessen, David B. ; Marston, Philip L.</creator><creatorcontrib>Wei, Wei ; Thiessen, David B. ; Marston, Philip L.</creatorcontrib><description>We demonstrate that active stiffening of a capillary bridge through the application of an appropriate Maxwell stress projection can be used to raise the frequency of bridge oscillations. The stress projection is proportional to the mode amplitude. This approach may be useful for suppressing the response of capillary systems to ambient vibrations. The amount of stiffening has a simple dependence on a dimensionless gain and it also depends on the slenderness of the bridge. Using a Plateau tank, we demonstrate a simple method for inferring the dimensionless gain.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.1978947</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic stability ; Physics ; Surface-tension-driven instability</subject><ispartof>Physics of fluids (1994), 2005-07, Vol.17 (7), p.071702-071702-4</ispartof><rights>American Institute of Physics</rights><rights>2005 American Institute of Physics</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-adac70bc886377cf1dfd3aa140372d8949a68bdb569146ca555cef844c3400be3</citedby><cites>FETCH-LOGICAL-c384t-adac70bc886377cf1dfd3aa140372d8949a68bdb569146ca555cef844c3400be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1558,4510,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17001060$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Thiessen, David B.</creatorcontrib><creatorcontrib>Marston, Philip L.</creatorcontrib><title>Control of the natural frequency of the (2,0) mode of liquid bridges using active electrostatic fields</title><title>Physics of fluids (1994)</title><description>We demonstrate that active stiffening of a capillary bridge through the application of an appropriate Maxwell stress projection can be used to raise the frequency of bridge oscillations. The stress projection is proportional to the mode amplitude. This approach may be useful for suppressing the response of capillary systems to ambient vibrations. The amount of stiffening has a simple dependence on a dimensionless gain and it also depends on the slenderness of the bridge. Using a Plateau tank, we demonstrate a simple method for inferring the dimensionless gain.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic stability</subject><subject>Physics</subject><subject>Surface-tension-driven instability</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKsH_0EughW3TprdZPcilOIXFLzoOWTzUSPb3TbZLfTfm7WVnhRPGTLPvMw8CF0SGBNg9I6MScHzIuVHaEAgLxLOGDvuaw4JY5ScorMQPgGAFhM2QHbW1K1vKtxY3H4YXMu287LC1pt1Z2q1_WlcT25hhJeNNv1P5dad07j0Ti9MwF1w9QJL1bqNwaYyKkaGVrZOYetMpcM5OrGyCuZi_w7R--PD2-w5mb8-vcym80TRPG0TqaXiUKo8Z5RzZYm2mkpJUqB8ouNZhWR5qcuMFSRlSmZZpozN01TRFKA0dIhGu1wVFwjeWLHybin9VhAQvSBBxF5QZK927EoGJSvrZa1cOAxwgDgBkbvfcUG5_qam_j10b1M0VkRp4ttmDLj5d8Bf8KbxB1CstKVfK0CXgQ</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Wei, Wei</creator><creator>Thiessen, David B.</creator><creator>Marston, Philip L.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050701</creationdate><title>Control of the natural frequency of the (2,0) mode of liquid bridges using active electrostatic fields</title><author>Wei, Wei ; Thiessen, David B. ; Marston, Philip L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-adac70bc886377cf1dfd3aa140372d8949a68bdb569146ca555cef844c3400be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic stability</topic><topic>Physics</topic><topic>Surface-tension-driven instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Thiessen, David B.</creatorcontrib><creatorcontrib>Marston, Philip L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Wei</au><au>Thiessen, David B.</au><au>Marston, Philip L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of the natural frequency of the (2,0) mode of liquid bridges using active electrostatic fields</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>17</volume><issue>7</issue><spage>071702</spage><epage>071702-4</epage><pages>071702-071702-4</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We demonstrate that active stiffening of a capillary bridge through the application of an appropriate Maxwell stress projection can be used to raise the frequency of bridge oscillations. The stress projection is proportional to the mode amplitude. This approach may be useful for suppressing the response of capillary systems to ambient vibrations. The amount of stiffening has a simple dependence on a dimensionless gain and it also depends on the slenderness of the bridge. Using a Plateau tank, we demonstrate a simple method for inferring the dimensionless gain.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.1978947</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2005-07, Vol.17 (7), p.071702-071702-4
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_1978947
source AIP Journals Complete; AIP Digital Archive
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamic stability
Physics
Surface-tension-driven instability
title Control of the natural frequency of the (2,0) mode of liquid bridges using active electrostatic fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20the%20natural%20frequency%20of%20the%20(2,0)%20mode%20of%20liquid%20bridges%20using%20active%20electrostatic%20fields&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Wei,%20Wei&rft.date=2005-07-01&rft.volume=17&rft.issue=7&rft.spage=071702&rft.epage=071702-4&rft.pages=071702-071702-4&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.1978947&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_1978947Control_of_the_natur%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true