Control of the natural frequency of the (2,0) mode of liquid bridges using active electrostatic fields
We demonstrate that active stiffening of a capillary bridge through the application of an appropriate Maxwell stress projection can be used to raise the frequency of bridge oscillations. The stress projection is proportional to the mode amplitude. This approach may be useful for suppressing the resp...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2005-07, Vol.17 (7), p.071702-071702-4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 071702-4 |
---|---|
container_issue | 7 |
container_start_page | 071702 |
container_title | Physics of fluids (1994) |
container_volume | 17 |
creator | Wei, Wei Thiessen, David B. Marston, Philip L. |
description | We demonstrate that active stiffening of a capillary bridge through the application of an appropriate Maxwell stress projection can be used to raise the frequency of bridge oscillations. The stress projection is proportional to the mode amplitude. This approach may be useful for suppressing the response of capillary systems to ambient vibrations. The amount of stiffening has a simple dependence on a dimensionless gain and it also depends on the slenderness of the bridge. Using a Plateau tank, we demonstrate a simple method for inferring the dimensionless gain. |
doi_str_mv | 10.1063/1.1978947 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1978947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1978947Control_of_the_natur</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-adac70bc886377cf1dfd3aa140372d8949a68bdb569146ca555cef844c3400be3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKsH_0EughW3TprdZPcilOIXFLzoOWTzUSPb3TbZLfTfm7WVnhRPGTLPvMw8CF0SGBNg9I6MScHzIuVHaEAgLxLOGDvuaw4JY5ScorMQPgGAFhM2QHbW1K1vKtxY3H4YXMu287LC1pt1Z2q1_WlcT25hhJeNNv1P5dad07j0Ti9MwF1w9QJL1bqNwaYyKkaGVrZOYetMpcM5OrGyCuZi_w7R--PD2-w5mb8-vcym80TRPG0TqaXiUKo8Z5RzZYm2mkpJUqB8ouNZhWR5qcuMFSRlSmZZpozN01TRFKA0dIhGu1wVFwjeWLHybin9VhAQvSBBxF5QZK927EoGJSvrZa1cOAxwgDgBkbvfcUG5_qam_j10b1M0VkRp4ttmDLj5d8Bf8KbxB1CstKVfK0CXgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Control of the natural frequency of the (2,0) mode of liquid bridges using active electrostatic fields</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Wei, Wei ; Thiessen, David B. ; Marston, Philip L.</creator><creatorcontrib>Wei, Wei ; Thiessen, David B. ; Marston, Philip L.</creatorcontrib><description>We demonstrate that active stiffening of a capillary bridge through the application of an appropriate Maxwell stress projection can be used to raise the frequency of bridge oscillations. The stress projection is proportional to the mode amplitude. This approach may be useful for suppressing the response of capillary systems to ambient vibrations. The amount of stiffening has a simple dependence on a dimensionless gain and it also depends on the slenderness of the bridge. Using a Plateau tank, we demonstrate a simple method for inferring the dimensionless gain.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.1978947</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic stability ; Physics ; Surface-tension-driven instability</subject><ispartof>Physics of fluids (1994), 2005-07, Vol.17 (7), p.071702-071702-4</ispartof><rights>American Institute of Physics</rights><rights>2005 American Institute of Physics</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-adac70bc886377cf1dfd3aa140372d8949a68bdb569146ca555cef844c3400be3</citedby><cites>FETCH-LOGICAL-c384t-adac70bc886377cf1dfd3aa140372d8949a68bdb569146ca555cef844c3400be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1558,4510,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17001060$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Thiessen, David B.</creatorcontrib><creatorcontrib>Marston, Philip L.</creatorcontrib><title>Control of the natural frequency of the (2,0) mode of liquid bridges using active electrostatic fields</title><title>Physics of fluids (1994)</title><description>We demonstrate that active stiffening of a capillary bridge through the application of an appropriate Maxwell stress projection can be used to raise the frequency of bridge oscillations. The stress projection is proportional to the mode amplitude. This approach may be useful for suppressing the response of capillary systems to ambient vibrations. The amount of stiffening has a simple dependence on a dimensionless gain and it also depends on the slenderness of the bridge. Using a Plateau tank, we demonstrate a simple method for inferring the dimensionless gain.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic stability</subject><subject>Physics</subject><subject>Surface-tension-driven instability</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKsH_0EughW3TprdZPcilOIXFLzoOWTzUSPb3TbZLfTfm7WVnhRPGTLPvMw8CF0SGBNg9I6MScHzIuVHaEAgLxLOGDvuaw4JY5ScorMQPgGAFhM2QHbW1K1vKtxY3H4YXMu287LC1pt1Z2q1_WlcT25hhJeNNv1P5dad07j0Ti9MwF1w9QJL1bqNwaYyKkaGVrZOYetMpcM5OrGyCuZi_w7R--PD2-w5mb8-vcym80TRPG0TqaXiUKo8Z5RzZYm2mkpJUqB8ouNZhWR5qcuMFSRlSmZZpozN01TRFKA0dIhGu1wVFwjeWLHybin9VhAQvSBBxF5QZK927EoGJSvrZa1cOAxwgDgBkbvfcUG5_qam_j10b1M0VkRp4ttmDLj5d8Bf8KbxB1CstKVfK0CXgQ</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Wei, Wei</creator><creator>Thiessen, David B.</creator><creator>Marston, Philip L.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050701</creationdate><title>Control of the natural frequency of the (2,0) mode of liquid bridges using active electrostatic fields</title><author>Wei, Wei ; Thiessen, David B. ; Marston, Philip L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-adac70bc886377cf1dfd3aa140372d8949a68bdb569146ca555cef844c3400be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic stability</topic><topic>Physics</topic><topic>Surface-tension-driven instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Thiessen, David B.</creatorcontrib><creatorcontrib>Marston, Philip L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Wei</au><au>Thiessen, David B.</au><au>Marston, Philip L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of the natural frequency of the (2,0) mode of liquid bridges using active electrostatic fields</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>17</volume><issue>7</issue><spage>071702</spage><epage>071702-4</epage><pages>071702-071702-4</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We demonstrate that active stiffening of a capillary bridge through the application of an appropriate Maxwell stress projection can be used to raise the frequency of bridge oscillations. The stress projection is proportional to the mode amplitude. This approach may be useful for suppressing the response of capillary systems to ambient vibrations. The amount of stiffening has a simple dependence on a dimensionless gain and it also depends on the slenderness of the bridge. Using a Plateau tank, we demonstrate a simple method for inferring the dimensionless gain.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.1978947</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2005-07, Vol.17 (7), p.071702-071702-4 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1978947 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Hydrodynamic stability Physics Surface-tension-driven instability |
title | Control of the natural frequency of the (2,0) mode of liquid bridges using active electrostatic fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20the%20natural%20frequency%20of%20the%20(2,0)%20mode%20of%20liquid%20bridges%20using%20active%20electrostatic%20fields&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Wei,%20Wei&rft.date=2005-07-01&rft.volume=17&rft.issue=7&rft.spage=071702&rft.epage=071702-4&rft.pages=071702-071702-4&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.1978947&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_1978947Control_of_the_natur%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |