Local superfield Lagrangian BRST quantization
A θ -local formulation of superfield Lagrangian quantization in non-Abelian hypergauges is proposed on the basis of an extension of general reducible gauge theories to special superfield models with a Grassmann parameter θ . We solve the problem of describing the quantum action and the gauge algebra...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2005-07, Vol.46 (7), p.072302-072302-24 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 072302-24 |
---|---|
container_issue | 7 |
container_start_page | 072302 |
container_title | Journal of mathematical physics |
container_volume | 46 |
creator | Gitman, D. M. Moshin, P. Yu Reshetnyak, A. A. |
description | A
θ
-local formulation of superfield Lagrangian quantization in non-Abelian hypergauges is proposed on the basis of an extension of general reducible gauge theories to special superfield models with a Grassmann parameter
θ
. We solve the problem of describing the quantum action and the gauge algebra of an
L
-stage-reducible superfield model in terms of a BRST charge for a formal dynamical system with first-class constraints of
(
L
+
1
)
-stage reducibility. Starting from
θ
-local functions of the quantum and gauge-fixing actions, with an essential use of Darboux coordinates on the antisymplectic manifold, we construct a superfield generating functionals of Green’s functions, including the effective action. We present two superfield forms of BRST transformations, considered as
θ
-shifts along vector fields defined by Hamiltonian-like systems constructed in terms of the quantum and gauge-fixing actions and an arbitrary
θ
-local boson function, as well as in terms of corresponding fermion functionals, through Poisson brackets with opposite Grassmann parities. The gauge independence of the S-matrix is proved. The Ward identities are derived. Connection is established with the BV method, the multilevel Batalin-Tyutin formalism, as well as with the superfield quantization scheme of Lavrov, Moshin, and Reshetnyak, extended to the case of general coordinates. |
doi_str_mv | 10.1063/1.1938707 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1938707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>878808091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-cd96bf08ea1e86c4ecaac3b47784afa600fe8dc0e300d8054a2d88ee1483fce73</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFYP_oOgJ4XU2c12s7kIWvyCgKD1vGw3szWlZtPdRNBfb9oIPUg9zeWZd955CDmlMKIgkis6olkiU0j3yICCzOJUjOU-GQAwFjMu5SE5CmEBQKnkfEDi3Bm9jEJbo7clLoso13Ovq3mpq-j25XUarVpdNeW3bkpXHZMDq5cBT37nkLzd300nj3H-_PA0ucljwzlvYlNkYmZBoqYoheFotDbJjKep5NpqAWBRFgYwASgkjLlmhZSIlMvEGkyTITnvc11oShVM2aB5N66q0DSKgcgyxrKOOuup2rtVi6FRC9f6qiumGB0LJrhgHXTRQ8a7EDxaVfvyQ_svRUGtlSmqfpV17HXPri9uHt4Nb7yprTfVeesCLncFfDq_XVZ1Yf-D_1b7AS5Tji4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215626462</pqid></control><display><type>article</type><title>Local superfield Lagrangian BRST quantization</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Gitman, D. M. ; Moshin, P. Yu ; Reshetnyak, A. A.</creator><creatorcontrib>Gitman, D. M. ; Moshin, P. Yu ; Reshetnyak, A. A.</creatorcontrib><description>A
θ
-local formulation of superfield Lagrangian quantization in non-Abelian hypergauges is proposed on the basis of an extension of general reducible gauge theories to special superfield models with a Grassmann parameter
θ
. We solve the problem of describing the quantum action and the gauge algebra of an
L
-stage-reducible superfield model in terms of a BRST charge for a formal dynamical system with first-class constraints of
(
L
+
1
)
-stage reducibility. Starting from
θ
-local functions of the quantum and gauge-fixing actions, with an essential use of Darboux coordinates on the antisymplectic manifold, we construct a superfield generating functionals of Green’s functions, including the effective action. We present two superfield forms of BRST transformations, considered as
θ
-shifts along vector fields defined by Hamiltonian-like systems constructed in terms of the quantum and gauge-fixing actions and an arbitrary
θ
-local boson function, as well as in terms of corresponding fermion functionals, through Poisson brackets with opposite Grassmann parities. The gauge independence of the S-matrix is proved. The Ward identities are derived. Connection is established with the BV method, the multilevel Batalin-Tyutin formalism, as well as with the superfield quantization scheme of Lavrov, Moshin, and Reshetnyak, extended to the case of general coordinates.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1938707</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>ACTION INTEGRAL ; ALGEBRA ; BOSONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COORDINATES ; FERMIONS ; FUNCTIONALS ; GAUGE INVARIANCE ; GREEN FUNCTION ; HAMILTONIANS ; LAGRANGIAN FIELD THEORY ; LAGRANGIAN FUNCTION ; Mathematical functions ; Mathematical models ; PARITY ; QUANTIZATION ; Quantum theory ; S MATRIX ; Theory ; TRANSFORMATIONS ; VECTOR FIELDS ; WARD IDENTITY</subject><ispartof>Journal of mathematical physics, 2005-07, Vol.46 (7), p.072302-072302-24</ispartof><rights>American Institute of Physics</rights><rights>2005 American Institute of Physics</rights><rights>Copyright American Institute of Physics Jul 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-cd96bf08ea1e86c4ecaac3b47784afa600fe8dc0e300d8054a2d88ee1483fce73</citedby><cites>FETCH-LOGICAL-c444t-cd96bf08ea1e86c4ecaac3b47784afa600fe8dc0e300d8054a2d88ee1483fce73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1938707$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902,76127,76133</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20699229$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gitman, D. M.</creatorcontrib><creatorcontrib>Moshin, P. Yu</creatorcontrib><creatorcontrib>Reshetnyak, A. A.</creatorcontrib><title>Local superfield Lagrangian BRST quantization</title><title>Journal of mathematical physics</title><description>A
θ
-local formulation of superfield Lagrangian quantization in non-Abelian hypergauges is proposed on the basis of an extension of general reducible gauge theories to special superfield models with a Grassmann parameter
θ
. We solve the problem of describing the quantum action and the gauge algebra of an
L
-stage-reducible superfield model in terms of a BRST charge for a formal dynamical system with first-class constraints of
(
L
+
1
)
-stage reducibility. Starting from
θ
-local functions of the quantum and gauge-fixing actions, with an essential use of Darboux coordinates on the antisymplectic manifold, we construct a superfield generating functionals of Green’s functions, including the effective action. We present two superfield forms of BRST transformations, considered as
θ
-shifts along vector fields defined by Hamiltonian-like systems constructed in terms of the quantum and gauge-fixing actions and an arbitrary
θ
-local boson function, as well as in terms of corresponding fermion functionals, through Poisson brackets with opposite Grassmann parities. The gauge independence of the S-matrix is proved. The Ward identities are derived. Connection is established with the BV method, the multilevel Batalin-Tyutin formalism, as well as with the superfield quantization scheme of Lavrov, Moshin, and Reshetnyak, extended to the case of general coordinates.</description><subject>ACTION INTEGRAL</subject><subject>ALGEBRA</subject><subject>BOSONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COORDINATES</subject><subject>FERMIONS</subject><subject>FUNCTIONALS</subject><subject>GAUGE INVARIANCE</subject><subject>GREEN FUNCTION</subject><subject>HAMILTONIANS</subject><subject>LAGRANGIAN FIELD THEORY</subject><subject>LAGRANGIAN FUNCTION</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>PARITY</subject><subject>QUANTIZATION</subject><subject>Quantum theory</subject><subject>S MATRIX</subject><subject>Theory</subject><subject>TRANSFORMATIONS</subject><subject>VECTOR FIELDS</subject><subject>WARD IDENTITY</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFYP_oOgJ4XU2c12s7kIWvyCgKD1vGw3szWlZtPdRNBfb9oIPUg9zeWZd955CDmlMKIgkis6olkiU0j3yICCzOJUjOU-GQAwFjMu5SE5CmEBQKnkfEDi3Bm9jEJbo7clLoso13Ovq3mpq-j25XUarVpdNeW3bkpXHZMDq5cBT37nkLzd300nj3H-_PA0ucljwzlvYlNkYmZBoqYoheFotDbJjKep5NpqAWBRFgYwASgkjLlmhZSIlMvEGkyTITnvc11oShVM2aB5N66q0DSKgcgyxrKOOuup2rtVi6FRC9f6qiumGB0LJrhgHXTRQ8a7EDxaVfvyQ_svRUGtlSmqfpV17HXPri9uHt4Nb7yprTfVeesCLncFfDq_XVZ1Yf-D_1b7AS5Tji4</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Gitman, D. M.</creator><creator>Moshin, P. Yu</creator><creator>Reshetnyak, A. A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20050701</creationdate><title>Local superfield Lagrangian BRST quantization</title><author>Gitman, D. M. ; Moshin, P. Yu ; Reshetnyak, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-cd96bf08ea1e86c4ecaac3b47784afa600fe8dc0e300d8054a2d88ee1483fce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ACTION INTEGRAL</topic><topic>ALGEBRA</topic><topic>BOSONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COORDINATES</topic><topic>FERMIONS</topic><topic>FUNCTIONALS</topic><topic>GAUGE INVARIANCE</topic><topic>GREEN FUNCTION</topic><topic>HAMILTONIANS</topic><topic>LAGRANGIAN FIELD THEORY</topic><topic>LAGRANGIAN FUNCTION</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>PARITY</topic><topic>QUANTIZATION</topic><topic>Quantum theory</topic><topic>S MATRIX</topic><topic>Theory</topic><topic>TRANSFORMATIONS</topic><topic>VECTOR FIELDS</topic><topic>WARD IDENTITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gitman, D. M.</creatorcontrib><creatorcontrib>Moshin, P. Yu</creatorcontrib><creatorcontrib>Reshetnyak, A. A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gitman, D. M.</au><au>Moshin, P. Yu</au><au>Reshetnyak, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local superfield Lagrangian BRST quantization</atitle><jtitle>Journal of mathematical physics</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>46</volume><issue>7</issue><spage>072302</spage><epage>072302-24</epage><pages>072302-072302-24</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A
θ
-local formulation of superfield Lagrangian quantization in non-Abelian hypergauges is proposed on the basis of an extension of general reducible gauge theories to special superfield models with a Grassmann parameter
θ
. We solve the problem of describing the quantum action and the gauge algebra of an
L
-stage-reducible superfield model in terms of a BRST charge for a formal dynamical system with first-class constraints of
(
L
+
1
)
-stage reducibility. Starting from
θ
-local functions of the quantum and gauge-fixing actions, with an essential use of Darboux coordinates on the antisymplectic manifold, we construct a superfield generating functionals of Green’s functions, including the effective action. We present two superfield forms of BRST transformations, considered as
θ
-shifts along vector fields defined by Hamiltonian-like systems constructed in terms of the quantum and gauge-fixing actions and an arbitrary
θ
-local boson function, as well as in terms of corresponding fermion functionals, through Poisson brackets with opposite Grassmann parities. The gauge independence of the S-matrix is proved. The Ward identities are derived. Connection is established with the BV method, the multilevel Batalin-Tyutin formalism, as well as with the superfield quantization scheme of Lavrov, Moshin, and Reshetnyak, extended to the case of general coordinates.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.1938707</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2005-07, Vol.46 (7), p.072302-072302-24 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1938707 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | ACTION INTEGRAL ALGEBRA BOSONS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COORDINATES FERMIONS FUNCTIONALS GAUGE INVARIANCE GREEN FUNCTION HAMILTONIANS LAGRANGIAN FIELD THEORY LAGRANGIAN FUNCTION Mathematical functions Mathematical models PARITY QUANTIZATION Quantum theory S MATRIX Theory TRANSFORMATIONS VECTOR FIELDS WARD IDENTITY |
title | Local superfield Lagrangian BRST quantization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A19%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20superfield%20Lagrangian%20BRST%20quantization&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Gitman,%20D.%20M.&rft.date=2005-07-01&rft.volume=46&rft.issue=7&rft.spage=072302&rft.epage=072302-24&rft.pages=072302-072302-24&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1938707&rft_dat=%3Cproquest_cross%3E878808091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215626462&rft_id=info:pmid/&rfr_iscdi=true |