The flow of thin liquid films over spinning disks:  Hydrodynamics and mass transfer

We study the hydrodynamics and mass transfer associated with gas absorption into a thin liquid film flowing over a spinning disk. We use the thin-layer approximation in conjunction with the Karman–Polhausen method to derive evolution equations for the film thickness and the volumetric flow rates in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2005-05, Vol.17 (5), p.052102-052102-20
Hauptverfasser: Matar, Omar K., Lawrence, Chris J., Sisoev, Grigori M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 052102-20
container_issue 5
container_start_page 052102
container_title Physics of fluids (1994)
container_volume 17
creator Matar, Omar K.
Lawrence, Chris J.
Sisoev, Grigori M.
description We study the hydrodynamics and mass transfer associated with gas absorption into a thin liquid film flowing over a spinning disk. We use the thin-layer approximation in conjunction with the Karman–Polhausen method to derive evolution equations for the film thickness and the volumetric flow rates in the radial and azimuthal directions. We also use the integral balance method to derive evolution equations for the thickness of the diffusion boundary layer as well as the concentration of solute at the disk surface. Numerical solutions of these partial differential equations, which govern the hydrodynamics and the associated mass transfer, reveal the formation of large finite-amplitude waves and elucidate their significant effect on the mass-transfer characteristics. We illustrate this dependence quantitatively by examining the effect of system parameters on the time-averaged and spatially averaged Sherwood numbers. The results are assessed by comparison with computations of the parabolized convective diffusion equation and experimental data.
doi_str_mv 10.1063/1.1891814
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1891814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1891814The_flow_of_thin_liq</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-4f65d9000823e1d7f60a7c29223308cd25f4d7bf84870945ed22e9303bf527da3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsL3yBbhan5mUkyLgQpaoWCm3Yd0kliozNJTcZKd4Jv6pM4QwsupK7uXXzncPgAOMdohBGjV3iERYkFzg_AACNRZpwxdtj_HGWMUXwMTlJ6QQjRkrABmM-WBto6fMBgYbt0Htbu7d1paF3dJBjWJsK0ct47_wy1S6_p-vvzC042Oga98apxVYLKa9iolGAblU_WxFNwZFWdzNnuDsH8_m42nmTTp4fH8e00q2iRt1luWaHLbosg1GDNLUOKV6QkhFIkKk0Km2u-sCIXHJV5YTQhpqSILmxBuFZ0CC62vVUMKUVj5Sq6RsWNxEj2PiSWOx8de7NlU-Va1brg98OdFNlLkcHKXorspHQFl_sK1iH-huVK2__gv9N-AI6jhNc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The flow of thin liquid films over spinning disks:  Hydrodynamics and mass transfer</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Matar, Omar K. ; Lawrence, Chris J. ; Sisoev, Grigori M.</creator><creatorcontrib>Matar, Omar K. ; Lawrence, Chris J. ; Sisoev, Grigori M.</creatorcontrib><description>We study the hydrodynamics and mass transfer associated with gas absorption into a thin liquid film flowing over a spinning disk. We use the thin-layer approximation in conjunction with the Karman–Polhausen method to derive evolution equations for the film thickness and the volumetric flow rates in the radial and azimuthal directions. We also use the integral balance method to derive evolution equations for the thickness of the diffusion boundary layer as well as the concentration of solute at the disk surface. Numerical solutions of these partial differential equations, which govern the hydrodynamics and the associated mass transfer, reveal the formation of large finite-amplitude waves and elucidate their significant effect on the mass-transfer characteristics. We illustrate this dependence quantitatively by examining the effect of system parameters on the time-averaged and spatially averaged Sherwood numbers. The results are assessed by comparison with computations of the parabolized convective diffusion equation and experimental data.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.1891814</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Physics of fluids (1994), 2005-05, Vol.17 (5), p.052102-052102-20</ispartof><rights>American Institute of Physics</rights><rights>2005 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-4f65d9000823e1d7f60a7c29223308cd25f4d7bf84870945ed22e9303bf527da3</citedby><cites>FETCH-LOGICAL-c354t-4f65d9000823e1d7f60a7c29223308cd25f4d7bf84870945ed22e9303bf527da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,792,1556,4500,27907,27908</link.rule.ids></links><search><creatorcontrib>Matar, Omar K.</creatorcontrib><creatorcontrib>Lawrence, Chris J.</creatorcontrib><creatorcontrib>Sisoev, Grigori M.</creatorcontrib><title>The flow of thin liquid films over spinning disks:  Hydrodynamics and mass transfer</title><title>Physics of fluids (1994)</title><description>We study the hydrodynamics and mass transfer associated with gas absorption into a thin liquid film flowing over a spinning disk. We use the thin-layer approximation in conjunction with the Karman–Polhausen method to derive evolution equations for the film thickness and the volumetric flow rates in the radial and azimuthal directions. We also use the integral balance method to derive evolution equations for the thickness of the diffusion boundary layer as well as the concentration of solute at the disk surface. Numerical solutions of these partial differential equations, which govern the hydrodynamics and the associated mass transfer, reveal the formation of large finite-amplitude waves and elucidate their significant effect on the mass-transfer characteristics. We illustrate this dependence quantitatively by examining the effect of system parameters on the time-averaged and spatially averaged Sherwood numbers. The results are assessed by comparison with computations of the parabolized convective diffusion equation and experimental data.</description><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsL3yBbhan5mUkyLgQpaoWCm3Yd0kliozNJTcZKd4Jv6pM4QwsupK7uXXzncPgAOMdohBGjV3iERYkFzg_AACNRZpwxdtj_HGWMUXwMTlJ6QQjRkrABmM-WBto6fMBgYbt0Htbu7d1paF3dJBjWJsK0ct47_wy1S6_p-vvzC042Oga98apxVYLKa9iolGAblU_WxFNwZFWdzNnuDsH8_m42nmTTp4fH8e00q2iRt1luWaHLbosg1GDNLUOKV6QkhFIkKk0Km2u-sCIXHJV5YTQhpqSILmxBuFZ0CC62vVUMKUVj5Sq6RsWNxEj2PiSWOx8de7NlU-Va1brg98OdFNlLkcHKXorspHQFl_sK1iH-huVK2__gv9N-AI6jhNc</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Matar, Omar K.</creator><creator>Lawrence, Chris J.</creator><creator>Sisoev, Grigori M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050501</creationdate><title>The flow of thin liquid films over spinning disks:  Hydrodynamics and mass transfer</title><author>Matar, Omar K. ; Lawrence, Chris J. ; Sisoev, Grigori M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-4f65d9000823e1d7f60a7c29223308cd25f4d7bf84870945ed22e9303bf527da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matar, Omar K.</creatorcontrib><creatorcontrib>Lawrence, Chris J.</creatorcontrib><creatorcontrib>Sisoev, Grigori M.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matar, Omar K.</au><au>Lawrence, Chris J.</au><au>Sisoev, Grigori M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The flow of thin liquid films over spinning disks:  Hydrodynamics and mass transfer</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>17</volume><issue>5</issue><spage>052102</spage><epage>052102-20</epage><pages>052102-052102-20</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We study the hydrodynamics and mass transfer associated with gas absorption into a thin liquid film flowing over a spinning disk. We use the thin-layer approximation in conjunction with the Karman–Polhausen method to derive evolution equations for the film thickness and the volumetric flow rates in the radial and azimuthal directions. We also use the integral balance method to derive evolution equations for the thickness of the diffusion boundary layer as well as the concentration of solute at the disk surface. Numerical solutions of these partial differential equations, which govern the hydrodynamics and the associated mass transfer, reveal the formation of large finite-amplitude waves and elucidate their significant effect on the mass-transfer characteristics. We illustrate this dependence quantitatively by examining the effect of system parameters on the time-averaged and spatially averaged Sherwood numbers. The results are assessed by comparison with computations of the parabolized convective diffusion equation and experimental data.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.1891814</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2005-05, Vol.17 (5), p.052102-052102-20
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_1891814
source AIP Journals Complete; AIP Digital Archive
title The flow of thin liquid films over spinning disks:  Hydrodynamics and mass transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20flow%20of%20thin%20liquid%20films%20over%20spinning%20disks:%E2%80%83%20Hydrodynamics%20and%20mass%20transfer&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Matar,%20Omar%20K.&rft.date=2005-05-01&rft.volume=17&rft.issue=5&rft.spage=052102&rft.epage=052102-20&rft.pages=052102-052102-20&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.1891814&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_1891814The_flow_of_thin_liq%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true