Propagation losses of silicon nitride waveguides in the near-infrared range

Si 3 N 4 ∕ SiO 2 waveguides have been fabricated by low pressure chemical vapor deposition within a complementary metal-oxide-semiconductor fabrication pilot line. Propagation losses for different waveguide geometries (channel and rib loaded) have been measured in the near infrared as a function of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2005-03, Vol.86 (12), p.121111-121111-3
Hauptverfasser: Melchiorri, M., Daldosso, N., Sbrana, F., Pavesi, L., Pucker, G., Kompocholis, C., Bellutti, P., Lui, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121111-3
container_issue 12
container_start_page 121111
container_title Applied physics letters
container_volume 86
creator Melchiorri, M.
Daldosso, N.
Sbrana, F.
Pavesi, L.
Pucker, G.
Kompocholis, C.
Bellutti, P.
Lui, A.
description Si 3 N 4 ∕ SiO 2 waveguides have been fabricated by low pressure chemical vapor deposition within a complementary metal-oxide-semiconductor fabrication pilot line. Propagation losses for different waveguide geometries (channel and rib loaded) have been measured in the near infrared as a function of polarization, waveguide width, and light wavelength. A maximum thickness of single Si 3 N 4 of 250 nm is allowed by the large stress between Si 3 N 4 and SiO 2 . This small thickness turns into significant propagation losses at 1544 nm of about 4.5 dB ∕ cm because of the poor optical mode confinement factor. Strain release and control is possible by using multilayer waveguides by alternating Si 3 N 4 and SiO 2 layers. In this way, propagation losses of about 1.5 dB ∕ cm have been demonstrated thanks to an improved optical mode confinement factor and the good quality of the interfaces in the waveguide.
doi_str_mv 10.1063/1.1889242
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1889242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-36550fefc7f5f504ebeccf43ec538fbf9649919926b553ae305f77c415cb83dc3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMoWFcP_oNcPWRNOkmbXARZ_MIFPeg5pOmkRmq7JFXx31vdPXjxNDMvD8PMQ8ip4EvBKzgXS6G1KWW5RwrB65qBEHqfFJxzYJVR4pAc5fw6j6oEKMj9Yxo3rnNTHAfajzljpmOgOfbRz8kQpxRbpJ_uA7v3ucs0DnR6QTqgSywOIbmELU1u6PCYHATXZzzZ1QV5vr56Wt2y9cPN3epyzXyp5cSgUooHDL4OKigusUHvgwT0CnRogqmkMcKYsmqUAofAVahrL4XyjYbWw4Kcbff6NB-cMNhNim8ufVnB7Y8FK-zOwsxebNns4_T75f_wHxV2q8KO8A1QpGWm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Propagation losses of silicon nitride waveguides in the near-infrared range</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Melchiorri, M. ; Daldosso, N. ; Sbrana, F. ; Pavesi, L. ; Pucker, G. ; Kompocholis, C. ; Bellutti, P. ; Lui, A.</creator><creatorcontrib>Melchiorri, M. ; Daldosso, N. ; Sbrana, F. ; Pavesi, L. ; Pucker, G. ; Kompocholis, C. ; Bellutti, P. ; Lui, A.</creatorcontrib><description>Si 3 N 4 ∕ SiO 2 waveguides have been fabricated by low pressure chemical vapor deposition within a complementary metal-oxide-semiconductor fabrication pilot line. Propagation losses for different waveguide geometries (channel and rib loaded) have been measured in the near infrared as a function of polarization, waveguide width, and light wavelength. A maximum thickness of single Si 3 N 4 of 250 nm is allowed by the large stress between Si 3 N 4 and SiO 2 . This small thickness turns into significant propagation losses at 1544 nm of about 4.5 dB ∕ cm because of the poor optical mode confinement factor. Strain release and control is possible by using multilayer waveguides by alternating Si 3 N 4 and SiO 2 layers. In this way, propagation losses of about 1.5 dB ∕ cm have been demonstrated thanks to an improved optical mode confinement factor and the good quality of the interfaces in the waveguide.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.1889242</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2005-03, Vol.86 (12), p.121111-121111-3</ispartof><rights>2005 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-36550fefc7f5f504ebeccf43ec538fbf9649919926b553ae305f77c415cb83dc3</citedby><cites>FETCH-LOGICAL-c284t-36550fefc7f5f504ebeccf43ec538fbf9649919926b553ae305f77c415cb83dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.1889242$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,792,1556,4500,27907,27908,76135,76141</link.rule.ids></links><search><creatorcontrib>Melchiorri, M.</creatorcontrib><creatorcontrib>Daldosso, N.</creatorcontrib><creatorcontrib>Sbrana, F.</creatorcontrib><creatorcontrib>Pavesi, L.</creatorcontrib><creatorcontrib>Pucker, G.</creatorcontrib><creatorcontrib>Kompocholis, C.</creatorcontrib><creatorcontrib>Bellutti, P.</creatorcontrib><creatorcontrib>Lui, A.</creatorcontrib><title>Propagation losses of silicon nitride waveguides in the near-infrared range</title><title>Applied physics letters</title><description>Si 3 N 4 ∕ SiO 2 waveguides have been fabricated by low pressure chemical vapor deposition within a complementary metal-oxide-semiconductor fabrication pilot line. Propagation losses for different waveguide geometries (channel and rib loaded) have been measured in the near infrared as a function of polarization, waveguide width, and light wavelength. A maximum thickness of single Si 3 N 4 of 250 nm is allowed by the large stress between Si 3 N 4 and SiO 2 . This small thickness turns into significant propagation losses at 1544 nm of about 4.5 dB ∕ cm because of the poor optical mode confinement factor. Strain release and control is possible by using multilayer waveguides by alternating Si 3 N 4 and SiO 2 layers. In this way, propagation losses of about 1.5 dB ∕ cm have been demonstrated thanks to an improved optical mode confinement factor and the good quality of the interfaces in the waveguide.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMoWFcP_oNcPWRNOkmbXARZ_MIFPeg5pOmkRmq7JFXx31vdPXjxNDMvD8PMQ8ip4EvBKzgXS6G1KWW5RwrB65qBEHqfFJxzYJVR4pAc5fw6j6oEKMj9Yxo3rnNTHAfajzljpmOgOfbRz8kQpxRbpJ_uA7v3ucs0DnR6QTqgSywOIbmELU1u6PCYHATXZzzZ1QV5vr56Wt2y9cPN3epyzXyp5cSgUooHDL4OKigusUHvgwT0CnRogqmkMcKYsmqUAofAVahrL4XyjYbWw4Kcbff6NB-cMNhNim8ufVnB7Y8FK-zOwsxebNns4_T75f_wHxV2q8KO8A1QpGWm</recordid><startdate>20050321</startdate><enddate>20050321</enddate><creator>Melchiorri, M.</creator><creator>Daldosso, N.</creator><creator>Sbrana, F.</creator><creator>Pavesi, L.</creator><creator>Pucker, G.</creator><creator>Kompocholis, C.</creator><creator>Bellutti, P.</creator><creator>Lui, A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050321</creationdate><title>Propagation losses of silicon nitride waveguides in the near-infrared range</title><author>Melchiorri, M. ; Daldosso, N. ; Sbrana, F. ; Pavesi, L. ; Pucker, G. ; Kompocholis, C. ; Bellutti, P. ; Lui, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-36550fefc7f5f504ebeccf43ec538fbf9649919926b553ae305f77c415cb83dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melchiorri, M.</creatorcontrib><creatorcontrib>Daldosso, N.</creatorcontrib><creatorcontrib>Sbrana, F.</creatorcontrib><creatorcontrib>Pavesi, L.</creatorcontrib><creatorcontrib>Pucker, G.</creatorcontrib><creatorcontrib>Kompocholis, C.</creatorcontrib><creatorcontrib>Bellutti, P.</creatorcontrib><creatorcontrib>Lui, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melchiorri, M.</au><au>Daldosso, N.</au><au>Sbrana, F.</au><au>Pavesi, L.</au><au>Pucker, G.</au><au>Kompocholis, C.</au><au>Bellutti, P.</au><au>Lui, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation losses of silicon nitride waveguides in the near-infrared range</atitle><jtitle>Applied physics letters</jtitle><date>2005-03-21</date><risdate>2005</risdate><volume>86</volume><issue>12</issue><spage>121111</spage><epage>121111-3</epage><pages>121111-121111-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Si 3 N 4 ∕ SiO 2 waveguides have been fabricated by low pressure chemical vapor deposition within a complementary metal-oxide-semiconductor fabrication pilot line. Propagation losses for different waveguide geometries (channel and rib loaded) have been measured in the near infrared as a function of polarization, waveguide width, and light wavelength. A maximum thickness of single Si 3 N 4 of 250 nm is allowed by the large stress between Si 3 N 4 and SiO 2 . This small thickness turns into significant propagation losses at 1544 nm of about 4.5 dB ∕ cm because of the poor optical mode confinement factor. Strain release and control is possible by using multilayer waveguides by alternating Si 3 N 4 and SiO 2 layers. In this way, propagation losses of about 1.5 dB ∕ cm have been demonstrated thanks to an improved optical mode confinement factor and the good quality of the interfaces in the waveguide.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.1889242</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2005-03, Vol.86 (12), p.121111-121111-3
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_1889242
source AIP Journals Complete; AIP Digital Archive
title Propagation losses of silicon nitride waveguides in the near-infrared range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20losses%20of%20silicon%20nitride%20waveguides%20in%20the%20near-infrared%20range&rft.jtitle=Applied%20physics%20letters&rft.au=Melchiorri,%20M.&rft.date=2005-03-21&rft.volume=86&rft.issue=12&rft.spage=121111&rft.epage=121111-3&rft.pages=121111-121111-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.1889242&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true