A dynamic nonlinear subgrid-scale stress model
In this paper, a dynamic subgrid scale (SGS) stress model based on Speziale’s quadratic nonlinear constitutive relation [C. G. Speziale, J. Fluid Mech. 178, 459 (1987); T. B. Gatski and C. G. Speziale, J. Fluid Mech. 254, 59 (1993)] is proposed, which includes the conventional dynamic SGS model as i...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2005-03, Vol.17 (3), p.035109-035109-15 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 035109-15 |
---|---|
container_issue | 3 |
container_start_page | 035109 |
container_title | Physics of fluids (1994) |
container_volume | 17 |
creator | Wang, Bing-Chen Bergstrom, Donald J. |
description | In this paper, a dynamic subgrid scale (SGS) stress model based on Speziale’s quadratic nonlinear constitutive relation [C. G. Speziale, J. Fluid Mech.
178, 459 (1987); T. B. Gatski and C. G. Speziale, J. Fluid Mech.
254, 59 (1993)] is proposed, which includes the conventional dynamic SGS model as its first-order approximation. The closure method utilizes both the symmetric and antisymmetric parts of the resolved velocity gradient, and allows for a nonlinear anisotropic representation of the SGS stress tensor. Unlike the conventional Smagorinsky type modeling approaches, the proposed model does not require an alignment between the SGS stress tensor and the resolved strain rate tensor. It exhibits significant flexibility in self-calibration of the model coefficients, and local stability without the need for plane averaging to avoid excessive backscatter of SGS turbulence kinetic energy and potential modeling singularity problems. It also allows for variable tensorial geometric relations between the SGS stress and its constituent terms, and reflects both forward and backward scatters of SGS turbulence kinetic energy between the filtered and subgrid scales of motions. Turbulent Couette flow for Reynolds numbers (based on channel height and one half the velocity difference between the two plates) of 2600 and 4762 was used in numerical simulations to validate the proposed approach. |
doi_str_mv | 10.1063/1.1858511 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1858511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1858511A_dynamic_nonlinear</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-d19538c2fbd767f3b0935149463ebab3886d9272a77b04d0019d30267e4dcaf23</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFYP_oNcPCikzmST_Th4CKV-QMGLnpfNfshKmpTdKPTfm9JiD1JPM4fnHeZ5CblGmCEweo8zFJWoEE_IBEHInDPGTrc7h5wxiufkIqVPAKCyYBMyqzO76fQqmKzruzZ0TscsfTUfMdg8Gd26LA3RpZSteuvaS3LmdZvc1X5Oyfvj4m3-nC9fn17m9TI3VNAhtygrKkzhG8sZ97QBSSssZcmoa3RDhWBWFrzQnDdQWgCUlkLBuCut0b6gU3K7u2tin1J0Xq1jWOm4UQhqK6pQ7UVH9mbHrvX2YR91Z0I6BEbrCqpy5B52XDJh0EPou-NHa7VvRf22MubvjuW_-3jIqrX1_8F_DX4A7baB5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A dynamic nonlinear subgrid-scale stress model</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Wang, Bing-Chen ; Bergstrom, Donald J.</creator><creatorcontrib>Wang, Bing-Chen ; Bergstrom, Donald J.</creatorcontrib><description>In this paper, a dynamic subgrid scale (SGS) stress model based on Speziale’s quadratic nonlinear constitutive relation [C. G. Speziale, J. Fluid Mech.
178, 459 (1987); T. B. Gatski and C. G. Speziale, J. Fluid Mech.
254, 59 (1993)] is proposed, which includes the conventional dynamic SGS model as its first-order approximation. The closure method utilizes both the symmetric and antisymmetric parts of the resolved velocity gradient, and allows for a nonlinear anisotropic representation of the SGS stress tensor. Unlike the conventional Smagorinsky type modeling approaches, the proposed model does not require an alignment between the SGS stress tensor and the resolved strain rate tensor. It exhibits significant flexibility in self-calibration of the model coefficients, and local stability without the need for plane averaging to avoid excessive backscatter of SGS turbulence kinetic energy and potential modeling singularity problems. It also allows for variable tensorial geometric relations between the SGS stress and its constituent terms, and reflects both forward and backward scatters of SGS turbulence kinetic energy between the filtered and subgrid scales of motions. Turbulent Couette flow for Reynolds numbers (based on channel height and one half the velocity difference between the two plates) of 2600 and 4762 was used in numerical simulations to validate the proposed approach.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.1858511</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Turbulence simulation and modeling ; Turbulent flows, convection, and heat transfer</subject><ispartof>Physics of fluids (1994), 2005-03, Vol.17 (3), p.035109-035109-15</ispartof><rights>American Institute of Physics</rights><rights>2005 American Institute of Physics</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-d19538c2fbd767f3b0935149463ebab3886d9272a77b04d0019d30267e4dcaf23</citedby><cites>FETCH-LOGICAL-c383t-d19538c2fbd767f3b0935149463ebab3886d9272a77b04d0019d30267e4dcaf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16635054$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Bing-Chen</creatorcontrib><creatorcontrib>Bergstrom, Donald J.</creatorcontrib><title>A dynamic nonlinear subgrid-scale stress model</title><title>Physics of fluids (1994)</title><description>In this paper, a dynamic subgrid scale (SGS) stress model based on Speziale’s quadratic nonlinear constitutive relation [C. G. Speziale, J. Fluid Mech.
178, 459 (1987); T. B. Gatski and C. G. Speziale, J. Fluid Mech.
254, 59 (1993)] is proposed, which includes the conventional dynamic SGS model as its first-order approximation. The closure method utilizes both the symmetric and antisymmetric parts of the resolved velocity gradient, and allows for a nonlinear anisotropic representation of the SGS stress tensor. Unlike the conventional Smagorinsky type modeling approaches, the proposed model does not require an alignment between the SGS stress tensor and the resolved strain rate tensor. It exhibits significant flexibility in self-calibration of the model coefficients, and local stability without the need for plane averaging to avoid excessive backscatter of SGS turbulence kinetic energy and potential modeling singularity problems. It also allows for variable tensorial geometric relations between the SGS stress and its constituent terms, and reflects both forward and backward scatters of SGS turbulence kinetic energy between the filtered and subgrid scales of motions. Turbulent Couette flow for Reynolds numbers (based on channel height and one half the velocity difference between the two plates) of 2600 and 4762 was used in numerical simulations to validate the proposed approach.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFYP_oNcPCikzmST_Th4CKV-QMGLnpfNfshKmpTdKPTfm9JiD1JPM4fnHeZ5CblGmCEweo8zFJWoEE_IBEHInDPGTrc7h5wxiufkIqVPAKCyYBMyqzO76fQqmKzruzZ0TscsfTUfMdg8Gd26LA3RpZSteuvaS3LmdZvc1X5Oyfvj4m3-nC9fn17m9TI3VNAhtygrKkzhG8sZ97QBSSssZcmoa3RDhWBWFrzQnDdQWgCUlkLBuCut0b6gU3K7u2tin1J0Xq1jWOm4UQhqK6pQ7UVH9mbHrvX2YR91Z0I6BEbrCqpy5B52XDJh0EPou-NHa7VvRf22MubvjuW_-3jIqrX1_8F_DX4A7baB5Q</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Wang, Bing-Chen</creator><creator>Bergstrom, Donald J.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050301</creationdate><title>A dynamic nonlinear subgrid-scale stress model</title><author>Wang, Bing-Chen ; Bergstrom, Donald J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-d19538c2fbd767f3b0935149463ebab3886d9272a77b04d0019d30267e4dcaf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bing-Chen</creatorcontrib><creatorcontrib>Bergstrom, Donald J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bing-Chen</au><au>Bergstrom, Donald J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic nonlinear subgrid-scale stress model</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2005-03-01</date><risdate>2005</risdate><volume>17</volume><issue>3</issue><spage>035109</spage><epage>035109-15</epage><pages>035109-035109-15</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>In this paper, a dynamic subgrid scale (SGS) stress model based on Speziale’s quadratic nonlinear constitutive relation [C. G. Speziale, J. Fluid Mech.
178, 459 (1987); T. B. Gatski and C. G. Speziale, J. Fluid Mech.
254, 59 (1993)] is proposed, which includes the conventional dynamic SGS model as its first-order approximation. The closure method utilizes both the symmetric and antisymmetric parts of the resolved velocity gradient, and allows for a nonlinear anisotropic representation of the SGS stress tensor. Unlike the conventional Smagorinsky type modeling approaches, the proposed model does not require an alignment between the SGS stress tensor and the resolved strain rate tensor. It exhibits significant flexibility in self-calibration of the model coefficients, and local stability without the need for plane averaging to avoid excessive backscatter of SGS turbulence kinetic energy and potential modeling singularity problems. It also allows for variable tensorial geometric relations between the SGS stress and its constituent terms, and reflects both forward and backward scatters of SGS turbulence kinetic energy between the filtered and subgrid scales of motions. Turbulent Couette flow for Reynolds numbers (based on channel height and one half the velocity difference between the two plates) of 2600 and 4762 was used in numerical simulations to validate the proposed approach.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.1858511</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2005-03, Vol.17 (3), p.035109-035109-15 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1858511 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Physics Turbulence simulation and modeling Turbulent flows, convection, and heat transfer |
title | A dynamic nonlinear subgrid-scale stress model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20nonlinear%20subgrid-scale%20stress%20model&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Wang,%20Bing-Chen&rft.date=2005-03-01&rft.volume=17&rft.issue=3&rft.spage=035109&rft.epage=035109-15&rft.pages=035109-035109-15&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.1858511&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_1858511A_dynamic_nonlinear%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |