A dynamic nonlinear subgrid-scale stress model

In this paper, a dynamic subgrid scale (SGS) stress model based on Speziale’s quadratic nonlinear constitutive relation [C. G. Speziale, J. Fluid Mech. 178, 459 (1987); T. B. Gatski and C. G. Speziale, J. Fluid Mech. 254, 59 (1993)] is proposed, which includes the conventional dynamic SGS model as i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2005-03, Vol.17 (3), p.035109-035109-15
Hauptverfasser: Wang, Bing-Chen, Bergstrom, Donald J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 035109-15
container_issue 3
container_start_page 035109
container_title Physics of fluids (1994)
container_volume 17
creator Wang, Bing-Chen
Bergstrom, Donald J.
description In this paper, a dynamic subgrid scale (SGS) stress model based on Speziale’s quadratic nonlinear constitutive relation [C. G. Speziale, J. Fluid Mech. 178, 459 (1987); T. B. Gatski and C. G. Speziale, J. Fluid Mech. 254, 59 (1993)] is proposed, which includes the conventional dynamic SGS model as its first-order approximation. The closure method utilizes both the symmetric and antisymmetric parts of the resolved velocity gradient, and allows for a nonlinear anisotropic representation of the SGS stress tensor. Unlike the conventional Smagorinsky type modeling approaches, the proposed model does not require an alignment between the SGS stress tensor and the resolved strain rate tensor. It exhibits significant flexibility in self-calibration of the model coefficients, and local stability without the need for plane averaging to avoid excessive backscatter of SGS turbulence kinetic energy and potential modeling singularity problems. It also allows for variable tensorial geometric relations between the SGS stress and its constituent terms, and reflects both forward and backward scatters of SGS turbulence kinetic energy between the filtered and subgrid scales of motions. Turbulent Couette flow for Reynolds numbers (based on channel height and one half the velocity difference between the two plates) of 2600 and 4762 was used in numerical simulations to validate the proposed approach.
doi_str_mv 10.1063/1.1858511
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1858511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1858511A_dynamic_nonlinear</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-d19538c2fbd767f3b0935149463ebab3886d9272a77b04d0019d30267e4dcaf23</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFYP_oNcPCikzmST_Th4CKV-QMGLnpfNfshKmpTdKPTfm9JiD1JPM4fnHeZ5CblGmCEweo8zFJWoEE_IBEHInDPGTrc7h5wxiufkIqVPAKCyYBMyqzO76fQqmKzruzZ0TscsfTUfMdg8Gd26LA3RpZSteuvaS3LmdZvc1X5Oyfvj4m3-nC9fn17m9TI3VNAhtygrKkzhG8sZ97QBSSssZcmoa3RDhWBWFrzQnDdQWgCUlkLBuCut0b6gU3K7u2tin1J0Xq1jWOm4UQhqK6pQ7UVH9mbHrvX2YR91Z0I6BEbrCqpy5B52XDJh0EPou-NHa7VvRf22MubvjuW_-3jIqrX1_8F_DX4A7baB5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A dynamic nonlinear subgrid-scale stress model</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Wang, Bing-Chen ; Bergstrom, Donald J.</creator><creatorcontrib>Wang, Bing-Chen ; Bergstrom, Donald J.</creatorcontrib><description>In this paper, a dynamic subgrid scale (SGS) stress model based on Speziale’s quadratic nonlinear constitutive relation [C. G. Speziale, J. Fluid Mech. 178, 459 (1987); T. B. Gatski and C. G. Speziale, J. Fluid Mech. 254, 59 (1993)] is proposed, which includes the conventional dynamic SGS model as its first-order approximation. The closure method utilizes both the symmetric and antisymmetric parts of the resolved velocity gradient, and allows for a nonlinear anisotropic representation of the SGS stress tensor. Unlike the conventional Smagorinsky type modeling approaches, the proposed model does not require an alignment between the SGS stress tensor and the resolved strain rate tensor. It exhibits significant flexibility in self-calibration of the model coefficients, and local stability without the need for plane averaging to avoid excessive backscatter of SGS turbulence kinetic energy and potential modeling singularity problems. It also allows for variable tensorial geometric relations between the SGS stress and its constituent terms, and reflects both forward and backward scatters of SGS turbulence kinetic energy between the filtered and subgrid scales of motions. Turbulent Couette flow for Reynolds numbers (based on channel height and one half the velocity difference between the two plates) of 2600 and 4762 was used in numerical simulations to validate the proposed approach.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.1858511</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Turbulence simulation and modeling ; Turbulent flows, convection, and heat transfer</subject><ispartof>Physics of fluids (1994), 2005-03, Vol.17 (3), p.035109-035109-15</ispartof><rights>American Institute of Physics</rights><rights>2005 American Institute of Physics</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-d19538c2fbd767f3b0935149463ebab3886d9272a77b04d0019d30267e4dcaf23</citedby><cites>FETCH-LOGICAL-c383t-d19538c2fbd767f3b0935149463ebab3886d9272a77b04d0019d30267e4dcaf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16635054$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Bing-Chen</creatorcontrib><creatorcontrib>Bergstrom, Donald J.</creatorcontrib><title>A dynamic nonlinear subgrid-scale stress model</title><title>Physics of fluids (1994)</title><description>In this paper, a dynamic subgrid scale (SGS) stress model based on Speziale’s quadratic nonlinear constitutive relation [C. G. Speziale, J. Fluid Mech. 178, 459 (1987); T. B. Gatski and C. G. Speziale, J. Fluid Mech. 254, 59 (1993)] is proposed, which includes the conventional dynamic SGS model as its first-order approximation. The closure method utilizes both the symmetric and antisymmetric parts of the resolved velocity gradient, and allows for a nonlinear anisotropic representation of the SGS stress tensor. Unlike the conventional Smagorinsky type modeling approaches, the proposed model does not require an alignment between the SGS stress tensor and the resolved strain rate tensor. It exhibits significant flexibility in self-calibration of the model coefficients, and local stability without the need for plane averaging to avoid excessive backscatter of SGS turbulence kinetic energy and potential modeling singularity problems. It also allows for variable tensorial geometric relations between the SGS stress and its constituent terms, and reflects both forward and backward scatters of SGS turbulence kinetic energy between the filtered and subgrid scales of motions. Turbulent Couette flow for Reynolds numbers (based on channel height and one half the velocity difference between the two plates) of 2600 and 4762 was used in numerical simulations to validate the proposed approach.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFYP_oNcPCikzmST_Th4CKV-QMGLnpfNfshKmpTdKPTfm9JiD1JPM4fnHeZ5CblGmCEweo8zFJWoEE_IBEHInDPGTrc7h5wxiufkIqVPAKCyYBMyqzO76fQqmKzruzZ0TscsfTUfMdg8Gd26LA3RpZSteuvaS3LmdZvc1X5Oyfvj4m3-nC9fn17m9TI3VNAhtygrKkzhG8sZ97QBSSssZcmoa3RDhWBWFrzQnDdQWgCUlkLBuCut0b6gU3K7u2tin1J0Xq1jWOm4UQhqK6pQ7UVH9mbHrvX2YR91Z0I6BEbrCqpy5B52XDJh0EPou-NHa7VvRf22MubvjuW_-3jIqrX1_8F_DX4A7baB5Q</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Wang, Bing-Chen</creator><creator>Bergstrom, Donald J.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050301</creationdate><title>A dynamic nonlinear subgrid-scale stress model</title><author>Wang, Bing-Chen ; Bergstrom, Donald J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-d19538c2fbd767f3b0935149463ebab3886d9272a77b04d0019d30267e4dcaf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bing-Chen</creatorcontrib><creatorcontrib>Bergstrom, Donald J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bing-Chen</au><au>Bergstrom, Donald J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic nonlinear subgrid-scale stress model</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2005-03-01</date><risdate>2005</risdate><volume>17</volume><issue>3</issue><spage>035109</spage><epage>035109-15</epage><pages>035109-035109-15</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>In this paper, a dynamic subgrid scale (SGS) stress model based on Speziale’s quadratic nonlinear constitutive relation [C. G. Speziale, J. Fluid Mech. 178, 459 (1987); T. B. Gatski and C. G. Speziale, J. Fluid Mech. 254, 59 (1993)] is proposed, which includes the conventional dynamic SGS model as its first-order approximation. The closure method utilizes both the symmetric and antisymmetric parts of the resolved velocity gradient, and allows for a nonlinear anisotropic representation of the SGS stress tensor. Unlike the conventional Smagorinsky type modeling approaches, the proposed model does not require an alignment between the SGS stress tensor and the resolved strain rate tensor. It exhibits significant flexibility in self-calibration of the model coefficients, and local stability without the need for plane averaging to avoid excessive backscatter of SGS turbulence kinetic energy and potential modeling singularity problems. It also allows for variable tensorial geometric relations between the SGS stress and its constituent terms, and reflects both forward and backward scatters of SGS turbulence kinetic energy between the filtered and subgrid scales of motions. Turbulent Couette flow for Reynolds numbers (based on channel height and one half the velocity difference between the two plates) of 2600 and 4762 was used in numerical simulations to validate the proposed approach.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.1858511</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2005-03, Vol.17 (3), p.035109-035109-15
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_1858511
source AIP Journals Complete; AIP Digital Archive
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
Turbulence simulation and modeling
Turbulent flows, convection, and heat transfer
title A dynamic nonlinear subgrid-scale stress model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20nonlinear%20subgrid-scale%20stress%20model&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Wang,%20Bing-Chen&rft.date=2005-03-01&rft.volume=17&rft.issue=3&rft.spage=035109&rft.epage=035109-15&rft.pages=035109-035109-15&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.1858511&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_1858511A_dynamic_nonlinear%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true