Magnetic normal modes of nanoelements

Micromagnetic calculations are used to determine the eigenfrequencies and precession patterns of some of the lowest-frequency magnetic normal modes of submicron patterned elements. Two examples are presented. For a Permalloy-like ellipse, 350 nm × 160 nm × 5 nm thick in zero field, the lowest freque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2005-05, Vol.97 (10), p.10J901-10J901-3
Hauptverfasser: McMichael, R. D., Stiles, M. D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10J901-3
container_issue 10
container_start_page 10J901
container_title Journal of applied physics
container_volume 97
creator McMichael, R. D.
Stiles, M. D.
description Micromagnetic calculations are used to determine the eigenfrequencies and precession patterns of some of the lowest-frequency magnetic normal modes of submicron patterned elements. Two examples are presented. For a Permalloy-like ellipse, 350 nm × 160 nm × 5 nm thick in zero field, the lowest frequency normal mode at 4 GHz corresponds to precession in the "ends" of the ellipse. Other resonant frequencies are compared with the frequencies of spinwaves with discrete wave vectors. For a normally magnetized 50 nm diameter × 15 nm thick cobalt disk, the calculated eigenfrequencies increase linearly with applied field, mimicking the behavior of the experimental critical current for spin transfer instabilities in an experimental realization of this disk.
doi_str_mv 10.1063/1.1852191
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1852191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-40364df5c5d71972865717b5b1e783e58d735fb8bda45607c669a042b09b79313</originalsourceid><addsrcrecordid>eNp1zz1PwzAUhWELgUQoDPyDLAwMKffGuf5YkFDFl9SqC8yW7TgoKLFRnIV_D1XKyHSWV0d6GLtGWCMIfodrVFSjxhNWIChdSSI4ZQVAjZXSUp-zi5w_ARAV1wW72dmPGObelzFNox3KMbUhl6kro40pDGEMcc6X7KyzQw5Xx12x96fHt81Ltd0_v24etpXnBHPVABdN25GnVqKWtRIkUTpyGKTigVQrOXVOudY2JEB6IbSFpnagndQc-YrdLr9-SjlPoTNfUz_a6dsgmIPPoDn6ftv7pc2-n-3cp_h__Ic0C9IckPwHvAxVgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetic normal modes of nanoelements</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>McMichael, R. D. ; Stiles, M. D.</creator><creatorcontrib>McMichael, R. D. ; Stiles, M. D.</creatorcontrib><description>Micromagnetic calculations are used to determine the eigenfrequencies and precession patterns of some of the lowest-frequency magnetic normal modes of submicron patterned elements. Two examples are presented. For a Permalloy-like ellipse, 350 nm × 160 nm × 5 nm thick in zero field, the lowest frequency normal mode at 4 GHz corresponds to precession in the "ends" of the ellipse. Other resonant frequencies are compared with the frequencies of spinwaves with discrete wave vectors. For a normally magnetized 50 nm diameter × 15 nm thick cobalt disk, the calculated eigenfrequencies increase linearly with applied field, mimicking the behavior of the experimental critical current for spin transfer instabilities in an experimental realization of this disk.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1852191</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2005-05, Vol.97 (10), p.10J901-10J901-3</ispartof><rights>2005 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-40364df5c5d71972865717b5b1e783e58d735fb8bda45607c669a042b09b79313</citedby><cites>FETCH-LOGICAL-c350t-40364df5c5d71972865717b5b1e783e58d735fb8bda45607c669a042b09b79313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.1852191$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>McMichael, R. D.</creatorcontrib><creatorcontrib>Stiles, M. D.</creatorcontrib><title>Magnetic normal modes of nanoelements</title><title>Journal of applied physics</title><description>Micromagnetic calculations are used to determine the eigenfrequencies and precession patterns of some of the lowest-frequency magnetic normal modes of submicron patterned elements. Two examples are presented. For a Permalloy-like ellipse, 350 nm × 160 nm × 5 nm thick in zero field, the lowest frequency normal mode at 4 GHz corresponds to precession in the "ends" of the ellipse. Other resonant frequencies are compared with the frequencies of spinwaves with discrete wave vectors. For a normally magnetized 50 nm diameter × 15 nm thick cobalt disk, the calculated eigenfrequencies increase linearly with applied field, mimicking the behavior of the experimental critical current for spin transfer instabilities in an experimental realization of this disk.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1zz1PwzAUhWELgUQoDPyDLAwMKffGuf5YkFDFl9SqC8yW7TgoKLFRnIV_D1XKyHSWV0d6GLtGWCMIfodrVFSjxhNWIChdSSI4ZQVAjZXSUp-zi5w_ARAV1wW72dmPGObelzFNox3KMbUhl6kro40pDGEMcc6X7KyzQw5Xx12x96fHt81Ltd0_v24etpXnBHPVABdN25GnVqKWtRIkUTpyGKTigVQrOXVOudY2JEB6IbSFpnagndQc-YrdLr9-SjlPoTNfUz_a6dsgmIPPoDn6ftv7pc2-n-3cp_h__Ic0C9IckPwHvAxVgg</recordid><startdate>20050515</startdate><enddate>20050515</enddate><creator>McMichael, R. D.</creator><creator>Stiles, M. D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050515</creationdate><title>Magnetic normal modes of nanoelements</title><author>McMichael, R. D. ; Stiles, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-40364df5c5d71972865717b5b1e783e58d735fb8bda45607c669a042b09b79313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McMichael, R. D.</creatorcontrib><creatorcontrib>Stiles, M. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McMichael, R. D.</au><au>Stiles, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic normal modes of nanoelements</atitle><jtitle>Journal of applied physics</jtitle><date>2005-05-15</date><risdate>2005</risdate><volume>97</volume><issue>10</issue><spage>10J901</spage><epage>10J901-3</epage><pages>10J901-10J901-3</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Micromagnetic calculations are used to determine the eigenfrequencies and precession patterns of some of the lowest-frequency magnetic normal modes of submicron patterned elements. Two examples are presented. For a Permalloy-like ellipse, 350 nm × 160 nm × 5 nm thick in zero field, the lowest frequency normal mode at 4 GHz corresponds to precession in the "ends" of the ellipse. Other resonant frequencies are compared with the frequencies of spinwaves with discrete wave vectors. For a normally magnetized 50 nm diameter × 15 nm thick cobalt disk, the calculated eigenfrequencies increase linearly with applied field, mimicking the behavior of the experimental critical current for spin transfer instabilities in an experimental realization of this disk.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.1852191</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2005-05, Vol.97 (10), p.10J901-10J901-3
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_1852191
source AIP Journals Complete; AIP Digital Archive
title Magnetic normal modes of nanoelements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20normal%20modes%20of%20nanoelements&rft.jtitle=Journal%20of%20applied%20physics&rft.au=McMichael,%20R.%20D.&rft.date=2005-05-15&rft.volume=97&rft.issue=10&rft.spage=10J901&rft.epage=10J901-3&rft.pages=10J901-10J901-3&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.1852191&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true