Magnetic normal modes of nanoelements
Micromagnetic calculations are used to determine the eigenfrequencies and precession patterns of some of the lowest-frequency magnetic normal modes of submicron patterned elements. Two examples are presented. For a Permalloy-like ellipse, 350 nm × 160 nm × 5 nm thick in zero field, the lowest freque...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2005-05, Vol.97 (10), p.10J901-10J901-3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10J901-3 |
---|---|
container_issue | 10 |
container_start_page | 10J901 |
container_title | Journal of applied physics |
container_volume | 97 |
creator | McMichael, R. D. Stiles, M. D. |
description | Micromagnetic calculations are used to determine the eigenfrequencies and precession patterns of some of the lowest-frequency magnetic normal modes of submicron patterned elements. Two examples are presented. For a Permalloy-like ellipse,
350
nm
×
160
nm
×
5
nm
thick in zero field, the lowest frequency normal mode at
4
GHz
corresponds to precession in the "ends" of the ellipse. Other resonant frequencies are compared with the frequencies of spinwaves with discrete wave vectors. For a normally magnetized
50
nm
diameter
×
15
nm
thick cobalt disk, the calculated eigenfrequencies increase linearly with applied field, mimicking the behavior of the experimental critical current for spin transfer instabilities in an experimental realization of this disk. |
doi_str_mv | 10.1063/1.1852191 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1852191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-40364df5c5d71972865717b5b1e783e58d735fb8bda45607c669a042b09b79313</originalsourceid><addsrcrecordid>eNp1zz1PwzAUhWELgUQoDPyDLAwMKffGuf5YkFDFl9SqC8yW7TgoKLFRnIV_D1XKyHSWV0d6GLtGWCMIfodrVFSjxhNWIChdSSI4ZQVAjZXSUp-zi5w_ARAV1wW72dmPGObelzFNox3KMbUhl6kro40pDGEMcc6X7KyzQw5Xx12x96fHt81Ltd0_v24etpXnBHPVABdN25GnVqKWtRIkUTpyGKTigVQrOXVOudY2JEB6IbSFpnagndQc-YrdLr9-SjlPoTNfUz_a6dsgmIPPoDn6ftv7pc2-n-3cp_h__Ic0C9IckPwHvAxVgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetic normal modes of nanoelements</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>McMichael, R. D. ; Stiles, M. D.</creator><creatorcontrib>McMichael, R. D. ; Stiles, M. D.</creatorcontrib><description>Micromagnetic calculations are used to determine the eigenfrequencies and precession patterns of some of the lowest-frequency magnetic normal modes of submicron patterned elements. Two examples are presented. For a Permalloy-like ellipse,
350
nm
×
160
nm
×
5
nm
thick in zero field, the lowest frequency normal mode at
4
GHz
corresponds to precession in the "ends" of the ellipse. Other resonant frequencies are compared with the frequencies of spinwaves with discrete wave vectors. For a normally magnetized
50
nm
diameter
×
15
nm
thick cobalt disk, the calculated eigenfrequencies increase linearly with applied field, mimicking the behavior of the experimental critical current for spin transfer instabilities in an experimental realization of this disk.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1852191</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2005-05, Vol.97 (10), p.10J901-10J901-3</ispartof><rights>2005 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-40364df5c5d71972865717b5b1e783e58d735fb8bda45607c669a042b09b79313</citedby><cites>FETCH-LOGICAL-c350t-40364df5c5d71972865717b5b1e783e58d735fb8bda45607c669a042b09b79313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.1852191$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>McMichael, R. D.</creatorcontrib><creatorcontrib>Stiles, M. D.</creatorcontrib><title>Magnetic normal modes of nanoelements</title><title>Journal of applied physics</title><description>Micromagnetic calculations are used to determine the eigenfrequencies and precession patterns of some of the lowest-frequency magnetic normal modes of submicron patterned elements. Two examples are presented. For a Permalloy-like ellipse,
350
nm
×
160
nm
×
5
nm
thick in zero field, the lowest frequency normal mode at
4
GHz
corresponds to precession in the "ends" of the ellipse. Other resonant frequencies are compared with the frequencies of spinwaves with discrete wave vectors. For a normally magnetized
50
nm
diameter
×
15
nm
thick cobalt disk, the calculated eigenfrequencies increase linearly with applied field, mimicking the behavior of the experimental critical current for spin transfer instabilities in an experimental realization of this disk.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1zz1PwzAUhWELgUQoDPyDLAwMKffGuf5YkFDFl9SqC8yW7TgoKLFRnIV_D1XKyHSWV0d6GLtGWCMIfodrVFSjxhNWIChdSSI4ZQVAjZXSUp-zi5w_ARAV1wW72dmPGObelzFNox3KMbUhl6kro40pDGEMcc6X7KyzQw5Xx12x96fHt81Ltd0_v24etpXnBHPVABdN25GnVqKWtRIkUTpyGKTigVQrOXVOudY2JEB6IbSFpnagndQc-YrdLr9-SjlPoTNfUz_a6dsgmIPPoDn6ftv7pc2-n-3cp_h__Ic0C9IckPwHvAxVgg</recordid><startdate>20050515</startdate><enddate>20050515</enddate><creator>McMichael, R. D.</creator><creator>Stiles, M. D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050515</creationdate><title>Magnetic normal modes of nanoelements</title><author>McMichael, R. D. ; Stiles, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-40364df5c5d71972865717b5b1e783e58d735fb8bda45607c669a042b09b79313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McMichael, R. D.</creatorcontrib><creatorcontrib>Stiles, M. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McMichael, R. D.</au><au>Stiles, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic normal modes of nanoelements</atitle><jtitle>Journal of applied physics</jtitle><date>2005-05-15</date><risdate>2005</risdate><volume>97</volume><issue>10</issue><spage>10J901</spage><epage>10J901-3</epage><pages>10J901-10J901-3</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Micromagnetic calculations are used to determine the eigenfrequencies and precession patterns of some of the lowest-frequency magnetic normal modes of submicron patterned elements. Two examples are presented. For a Permalloy-like ellipse,
350
nm
×
160
nm
×
5
nm
thick in zero field, the lowest frequency normal mode at
4
GHz
corresponds to precession in the "ends" of the ellipse. Other resonant frequencies are compared with the frequencies of spinwaves with discrete wave vectors. For a normally magnetized
50
nm
diameter
×
15
nm
thick cobalt disk, the calculated eigenfrequencies increase linearly with applied field, mimicking the behavior of the experimental critical current for spin transfer instabilities in an experimental realization of this disk.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.1852191</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2005-05, Vol.97 (10), p.10J901-10J901-3 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1852191 |
source | AIP Journals Complete; AIP Digital Archive |
title | Magnetic normal modes of nanoelements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20normal%20modes%20of%20nanoelements&rft.jtitle=Journal%20of%20applied%20physics&rft.au=McMichael,%20R.%20D.&rft.date=2005-05-15&rft.volume=97&rft.issue=10&rft.spage=10J901&rft.epage=10J901-3&rft.pages=10J901-10J901-3&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.1852191&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |