Limitations of the stretched exponential function for describing dynamics in disordered solid materials

Around the glass transition temperature, relaxation dynamics in glass-forming materials follows a strong nonexponential behavior. It is widely accepted that an empirically based stretched exponential function, known as the Kohlrausch-Williams-Watts (KWW) function, ϕ ( t ) = e − ( t ∕ τ ) β , describ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2005-03, Vol.97 (6), p.063507-063507-4
Hauptverfasser: Apitz, D., Johansen, P. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 063507-4
container_issue 6
container_start_page 063507
container_title Journal of applied physics
container_volume 97
creator Apitz, D.
Johansen, P. M.
description Around the glass transition temperature, relaxation dynamics in glass-forming materials follows a strong nonexponential behavior. It is widely accepted that an empirically based stretched exponential function, known as the Kohlrausch-Williams-Watts (KWW) function, ϕ ( t ) = e − ( t ∕ τ ) β , describes universally a broad variety of experimental data. Using intuitive pictures and ellipsometric measurements, we show that (1) in order to describe the dynamics in disordered materials such as in polymers using a KWW function, the response has to be considered over a specific region of time, (2) a single KWW function is not sufficient for correctly describing more than one relaxation processes, and (3) in certain cases, stretching exponents depending on temperature do not cover the ranges previously suggested (from 0 to 1, e.g., as a sigmoid function). As an example, we show that the temperature dependence of the stretching exponent β ( T ) depends highly on how the curve fits with the KWW function are performed.
doi_str_mv 10.1063/1.1852069
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1852069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-6b2c22cd20a1f41ef1639fe2b45e468a453fbd5ad8da125435ca021f5e989a743</originalsourceid><addsrcrecordid>eNp1kEtLAzEYRYMoWKsL_0G2LqbmSybTZCNI8QUDbnQdMnm0kU5Skgj23zulXbhxdTfnXrgHoVsgCyAdu4cFCE5JJ8_QDIiQzZJzco5mhFBohFzKS3RVyhchAILJGVr3YQxV15BiwcnjunG41Oyq2TiL3c8uRRdr0Fvsv6M5YNinjK0rJochxDW2-6jHYAoOEdtQUrYuT9WStsHiUVeXp3a5Rhd-Cndzyjn6fH76WL02_fvL2-qxbwzjpDbdQA2lxlKiwbfgPHRMekeHlru2E7rlzA-WayusBspbxo2ennnupJB62bI5ujvumpxKyc6rXQ6jznsFRB0MKVAnQxP7cGSLOSn4H_6jSSWvJk2qsF96jnB6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Limitations of the stretched exponential function for describing dynamics in disordered solid materials</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Apitz, D. ; Johansen, P. M.</creator><creatorcontrib>Apitz, D. ; Johansen, P. M.</creatorcontrib><description>Around the glass transition temperature, relaxation dynamics in glass-forming materials follows a strong nonexponential behavior. It is widely accepted that an empirically based stretched exponential function, known as the Kohlrausch-Williams-Watts (KWW) function, ϕ ( t ) = e − ( t ∕ τ ) β , describes universally a broad variety of experimental data. Using intuitive pictures and ellipsometric measurements, we show that (1) in order to describe the dynamics in disordered materials such as in polymers using a KWW function, the response has to be considered over a specific region of time, (2) a single KWW function is not sufficient for correctly describing more than one relaxation processes, and (3) in certain cases, stretching exponents depending on temperature do not cover the ranges previously suggested (from 0 to 1, e.g., as a sigmoid function). As an example, we show that the temperature dependence of the stretching exponent β ( T ) depends highly on how the curve fits with the KWW function are performed.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1852069</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2005-03, Vol.97 (6), p.063507-063507-4</ispartof><rights>2005 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-6b2c22cd20a1f41ef1639fe2b45e468a453fbd5ad8da125435ca021f5e989a743</citedby><cites>FETCH-LOGICAL-c350t-6b2c22cd20a1f41ef1639fe2b45e468a453fbd5ad8da125435ca021f5e989a743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.1852069$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1558,4510,27923,27924,76155,76161</link.rule.ids></links><search><creatorcontrib>Apitz, D.</creatorcontrib><creatorcontrib>Johansen, P. M.</creatorcontrib><title>Limitations of the stretched exponential function for describing dynamics in disordered solid materials</title><title>Journal of applied physics</title><description>Around the glass transition temperature, relaxation dynamics in glass-forming materials follows a strong nonexponential behavior. It is widely accepted that an empirically based stretched exponential function, known as the Kohlrausch-Williams-Watts (KWW) function, ϕ ( t ) = e − ( t ∕ τ ) β , describes universally a broad variety of experimental data. Using intuitive pictures and ellipsometric measurements, we show that (1) in order to describe the dynamics in disordered materials such as in polymers using a KWW function, the response has to be considered over a specific region of time, (2) a single KWW function is not sufficient for correctly describing more than one relaxation processes, and (3) in certain cases, stretching exponents depending on temperature do not cover the ranges previously suggested (from 0 to 1, e.g., as a sigmoid function). As an example, we show that the temperature dependence of the stretching exponent β ( T ) depends highly on how the curve fits with the KWW function are performed.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEYRYMoWKsL_0G2LqbmSybTZCNI8QUDbnQdMnm0kU5Skgj23zulXbhxdTfnXrgHoVsgCyAdu4cFCE5JJ8_QDIiQzZJzco5mhFBohFzKS3RVyhchAILJGVr3YQxV15BiwcnjunG41Oyq2TiL3c8uRRdr0Fvsv6M5YNinjK0rJochxDW2-6jHYAoOEdtQUrYuT9WStsHiUVeXp3a5Rhd-Cndzyjn6fH76WL02_fvL2-qxbwzjpDbdQA2lxlKiwbfgPHRMekeHlru2E7rlzA-WayusBspbxo2ennnupJB62bI5ujvumpxKyc6rXQ6jznsFRB0MKVAnQxP7cGSLOSn4H_6jSSWvJk2qsF96jnB6</recordid><startdate>20050315</startdate><enddate>20050315</enddate><creator>Apitz, D.</creator><creator>Johansen, P. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050315</creationdate><title>Limitations of the stretched exponential function for describing dynamics in disordered solid materials</title><author>Apitz, D. ; Johansen, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-6b2c22cd20a1f41ef1639fe2b45e468a453fbd5ad8da125435ca021f5e989a743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apitz, D.</creatorcontrib><creatorcontrib>Johansen, P. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apitz, D.</au><au>Johansen, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limitations of the stretched exponential function for describing dynamics in disordered solid materials</atitle><jtitle>Journal of applied physics</jtitle><date>2005-03-15</date><risdate>2005</risdate><volume>97</volume><issue>6</issue><spage>063507</spage><epage>063507-4</epage><pages>063507-063507-4</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Around the glass transition temperature, relaxation dynamics in glass-forming materials follows a strong nonexponential behavior. It is widely accepted that an empirically based stretched exponential function, known as the Kohlrausch-Williams-Watts (KWW) function, ϕ ( t ) = e − ( t ∕ τ ) β , describes universally a broad variety of experimental data. Using intuitive pictures and ellipsometric measurements, we show that (1) in order to describe the dynamics in disordered materials such as in polymers using a KWW function, the response has to be considered over a specific region of time, (2) a single KWW function is not sufficient for correctly describing more than one relaxation processes, and (3) in certain cases, stretching exponents depending on temperature do not cover the ranges previously suggested (from 0 to 1, e.g., as a sigmoid function). As an example, we show that the temperature dependence of the stretching exponent β ( T ) depends highly on how the curve fits with the KWW function are performed.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.1852069</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2005-03, Vol.97 (6), p.063507-063507-4
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_1852069
source AIP Journals Complete; AIP Digital Archive
title Limitations of the stretched exponential function for describing dynamics in disordered solid materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limitations%20of%20the%20stretched%20exponential%20function%20for%20describing%20dynamics%20in%20disordered%20solid%20materials&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Apitz,%20D.&rft.date=2005-03-15&rft.volume=97&rft.issue=6&rft.spage=063507&rft.epage=063507-4&rft.pages=063507-063507-4&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.1852069&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true