Structure and electronic properties of zirconium and hafnium nitrides and oxynitrides

The atomic structure, stability and electronic properties of zirconium and hafnium nitrides and oxynitrides (MN, M3N4, and M2N2O; M=Zr, Hf) have been studied using first-principles density functional theory calculations. It is found that the orthorhombic Pnam structure of M3N4, which was observed ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2005-02, Vol.97 (4)
Hauptverfasser: Bazhanov, D. I., Knizhnik, A. A., Safonov, A. A., Bagatur’yants, A. A., Stoker, M. W., Korkin, A. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of applied physics
container_volume 97
creator Bazhanov, D. I.
Knizhnik, A. A.
Safonov, A. A.
Bagatur’yants, A. A.
Stoker, M. W.
Korkin, A. A.
description The atomic structure, stability and electronic properties of zirconium and hafnium nitrides and oxynitrides (MN, M3N4, and M2N2O; M=Zr, Hf) have been studied using first-principles density functional theory calculations. It is found that the orthorhombic Pnam structure of M3N4, which was observed experimentally for zirconium nitride, is more stable for this stoichiometry than the cubic spinel and rock-salt-type structures. The calculated band structures and electronic densities of states demonstrate that both the MN and M3N4 phases of zirconium and hafnium nitrides in the rock-salt-type structure are characterized by metallic properties, while the orthorhombic structure of the M3N4 phase exhibits an insulating behavior in agreement with experimental observations. The formation of nitrogen vacancies in the insulating M3N4 phase converts it into the metallic MN phase. Calculations of Zr2N2O and Hf2N2O in the cubic Bixbyite-type and hexagonal P3–ml crystal structures predict that these materials are insulators and that the Bixbyite-type structure found experimentally is lower in energy than the P3–ml phase.
doi_str_mv 10.1063/1.1851000
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1851000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1851000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-2db547d239444f109d8c500dfac9137fcc7aafa667785bcb2d8a2fd2acb72e843</originalsourceid><addsrcrecordid>eNo1kD9PwzAUxC0EEqUw8A2yMqS8Z8exPaKKf1IlBugcOc-2CGqTyHYkyqenLWW6u59ONxxjtwgLhFrc4wK1RAA4YzMEbUolJZyzGQDHUhtlLtlVSl8AiFqYGVu_5zhRnqIvbO8Kv_GU49B3VIxxGH3MnU_FEIqfLtIeT9tj7dOGo--7HDu3bxzg8L37z9fsIthN8jcnnbP10-PH8qVcvT2_Lh9WJXEjc8ldKyvluDBVVQUE4zRJABcsGRQqEClrg61rpbRsqeVOWx4ct9Qq7nUl5uzub5fikFL0oRljt7Vx1yA0hz8abE5_iF-ln1SI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure and electronic properties of zirconium and hafnium nitrides and oxynitrides</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Bazhanov, D. I. ; Knizhnik, A. A. ; Safonov, A. A. ; Bagatur’yants, A. A. ; Stoker, M. W. ; Korkin, A. A.</creator><creatorcontrib>Bazhanov, D. I. ; Knizhnik, A. A. ; Safonov, A. A. ; Bagatur’yants, A. A. ; Stoker, M. W. ; Korkin, A. A.</creatorcontrib><description>The atomic structure, stability and electronic properties of zirconium and hafnium nitrides and oxynitrides (MN, M3N4, and M2N2O; M=Zr, Hf) have been studied using first-principles density functional theory calculations. It is found that the orthorhombic Pnam structure of M3N4, which was observed experimentally for zirconium nitride, is more stable for this stoichiometry than the cubic spinel and rock-salt-type structures. The calculated band structures and electronic densities of states demonstrate that both the MN and M3N4 phases of zirconium and hafnium nitrides in the rock-salt-type structure are characterized by metallic properties, while the orthorhombic structure of the M3N4 phase exhibits an insulating behavior in agreement with experimental observations. The formation of nitrogen vacancies in the insulating M3N4 phase converts it into the metallic MN phase. Calculations of Zr2N2O and Hf2N2O in the cubic Bixbyite-type and hexagonal P3–ml crystal structures predict that these materials are insulators and that the Bixbyite-type structure found experimentally is lower in energy than the P3–ml phase.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1851000</identifier><language>eng</language><ispartof>Journal of applied physics, 2005-02, Vol.97 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-2db547d239444f109d8c500dfac9137fcc7aafa667785bcb2d8a2fd2acb72e843</citedby><cites>FETCH-LOGICAL-c295t-2db547d239444f109d8c500dfac9137fcc7aafa667785bcb2d8a2fd2acb72e843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bazhanov, D. I.</creatorcontrib><creatorcontrib>Knizhnik, A. A.</creatorcontrib><creatorcontrib>Safonov, A. A.</creatorcontrib><creatorcontrib>Bagatur’yants, A. A.</creatorcontrib><creatorcontrib>Stoker, M. W.</creatorcontrib><creatorcontrib>Korkin, A. A.</creatorcontrib><title>Structure and electronic properties of zirconium and hafnium nitrides and oxynitrides</title><title>Journal of applied physics</title><description>The atomic structure, stability and electronic properties of zirconium and hafnium nitrides and oxynitrides (MN, M3N4, and M2N2O; M=Zr, Hf) have been studied using first-principles density functional theory calculations. It is found that the orthorhombic Pnam structure of M3N4, which was observed experimentally for zirconium nitride, is more stable for this stoichiometry than the cubic spinel and rock-salt-type structures. The calculated band structures and electronic densities of states demonstrate that both the MN and M3N4 phases of zirconium and hafnium nitrides in the rock-salt-type structure are characterized by metallic properties, while the orthorhombic structure of the M3N4 phase exhibits an insulating behavior in agreement with experimental observations. The formation of nitrogen vacancies in the insulating M3N4 phase converts it into the metallic MN phase. Calculations of Zr2N2O and Hf2N2O in the cubic Bixbyite-type and hexagonal P3–ml crystal structures predict that these materials are insulators and that the Bixbyite-type structure found experimentally is lower in energy than the P3–ml phase.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo1kD9PwzAUxC0EEqUw8A2yMqS8Z8exPaKKf1IlBugcOc-2CGqTyHYkyqenLWW6u59ONxxjtwgLhFrc4wK1RAA4YzMEbUolJZyzGQDHUhtlLtlVSl8AiFqYGVu_5zhRnqIvbO8Kv_GU49B3VIxxGH3MnU_FEIqfLtIeT9tj7dOGo--7HDu3bxzg8L37z9fsIthN8jcnnbP10-PH8qVcvT2_Lh9WJXEjc8ldKyvluDBVVQUE4zRJABcsGRQqEClrg61rpbRsqeVOWx4ct9Qq7nUl5uzub5fikFL0oRljt7Vx1yA0hz8abE5_iF-ln1SI</recordid><startdate>20050215</startdate><enddate>20050215</enddate><creator>Bazhanov, D. I.</creator><creator>Knizhnik, A. A.</creator><creator>Safonov, A. A.</creator><creator>Bagatur’yants, A. A.</creator><creator>Stoker, M. W.</creator><creator>Korkin, A. A.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050215</creationdate><title>Structure and electronic properties of zirconium and hafnium nitrides and oxynitrides</title><author>Bazhanov, D. I. ; Knizhnik, A. A. ; Safonov, A. A. ; Bagatur’yants, A. A. ; Stoker, M. W. ; Korkin, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-2db547d239444f109d8c500dfac9137fcc7aafa667785bcb2d8a2fd2acb72e843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazhanov, D. I.</creatorcontrib><creatorcontrib>Knizhnik, A. A.</creatorcontrib><creatorcontrib>Safonov, A. A.</creatorcontrib><creatorcontrib>Bagatur’yants, A. A.</creatorcontrib><creatorcontrib>Stoker, M. W.</creatorcontrib><creatorcontrib>Korkin, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazhanov, D. I.</au><au>Knizhnik, A. A.</au><au>Safonov, A. A.</au><au>Bagatur’yants, A. A.</au><au>Stoker, M. W.</au><au>Korkin, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and electronic properties of zirconium and hafnium nitrides and oxynitrides</atitle><jtitle>Journal of applied physics</jtitle><date>2005-02-15</date><risdate>2005</risdate><volume>97</volume><issue>4</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>The atomic structure, stability and electronic properties of zirconium and hafnium nitrides and oxynitrides (MN, M3N4, and M2N2O; M=Zr, Hf) have been studied using first-principles density functional theory calculations. It is found that the orthorhombic Pnam structure of M3N4, which was observed experimentally for zirconium nitride, is more stable for this stoichiometry than the cubic spinel and rock-salt-type structures. The calculated band structures and electronic densities of states demonstrate that both the MN and M3N4 phases of zirconium and hafnium nitrides in the rock-salt-type structure are characterized by metallic properties, while the orthorhombic structure of the M3N4 phase exhibits an insulating behavior in agreement with experimental observations. The formation of nitrogen vacancies in the insulating M3N4 phase converts it into the metallic MN phase. Calculations of Zr2N2O and Hf2N2O in the cubic Bixbyite-type and hexagonal P3–ml crystal structures predict that these materials are insulators and that the Bixbyite-type structure found experimentally is lower in energy than the P3–ml phase.</abstract><doi>10.1063/1.1851000</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2005-02, Vol.97 (4)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_1851000
source AIP Journals Complete; AIP Digital Archive
title Structure and electronic properties of zirconium and hafnium nitrides and oxynitrides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20electronic%20properties%20of%20zirconium%20and%20hafnium%20nitrides%20and%20oxynitrides&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bazhanov,%20D.%20I.&rft.date=2005-02-15&rft.volume=97&rft.issue=4&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1851000&rft_dat=%3Ccrossref%3E10_1063_1_1851000%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true