Ultrasound detection using polymer microring optical resonator

Application of polymer waveguide microring resonators for high-frequency ultrasound detection is presented. The device consists of a microring optical resonator coupled to a straight optical waveguide which serves as input and output ports. Acoustic waves irradiating the ring waveguide induce strain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2004-11, Vol.85 (22), p.5418-5420
Hauptverfasser: Ashkenazi, Shai, Chao, Chung-Yen, Guo, L. Jay, O'Donnell, Matthew
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5420
container_issue 22
container_start_page 5418
container_title Applied physics letters
container_volume 85
creator Ashkenazi, Shai
Chao, Chung-Yen
Guo, L. Jay
O'Donnell, Matthew
description Application of polymer waveguide microring resonators for high-frequency ultrasound detection is presented. The device consists of a microring optical resonator coupled to a straight optical waveguide which serves as input and output ports. Acoustic waves irradiating the ring waveguide induce strain modifying the waveguide cross section. As a consequence, the effective refractive index of optical waves propagating along the ring is modified. The sharp wavelength dependence of the high Q -factor resonator enhances the optical response to acoustic strain. High sensitivity is demonstrated experimentally in detecting broadband ultrasound pulses from a 10 MHz transducer. Methods of extending the technique to form multi-element ultrasonic arrays for imaging applications are proposed.
doi_str_mv 10.1063/1.1829775
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1829775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-4f14433baae82bd9e501e0f9cc185ec09e2322f79ec505772d15c3587e6e79593</originalsourceid><addsrcrecordid>eNp1jz1rwzAURUVpoW7aof_AawenepJlSUughH5BoEszC0V-Liq2ZSRlyL-vQ0I7dXrcx-FyDyH3QJdAG_4IS1BMSykuSAFUyooDqEtSUEp51WgB1-Qmpe85CsZ5QVbbPkebwn5syxYzuuzDWO6TH7_KKfSHAWM5eBdDPH7ClL2zfRkxhdHmEG_JVWf7hHfnuyDbl-fP9Vu1-Xh9Xz9tKseVyFXdQV1zvrMWFdu1GgUFpJ12DpRARzUyzlgnNTpBhZSsBeG4UBIblFpoviAPp955SUoROzNFP9h4MEDNUdyAOYvP7OrEJuezPfr8D__Zm197_gPO2WDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrasound detection using polymer microring optical resonator</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Ashkenazi, Shai ; Chao, Chung-Yen ; Guo, L. Jay ; O'Donnell, Matthew</creator><creatorcontrib>Ashkenazi, Shai ; Chao, Chung-Yen ; Guo, L. Jay ; O'Donnell, Matthew</creatorcontrib><description>Application of polymer waveguide microring resonators for high-frequency ultrasound detection is presented. The device consists of a microring optical resonator coupled to a straight optical waveguide which serves as input and output ports. Acoustic waves irradiating the ring waveguide induce strain modifying the waveguide cross section. As a consequence, the effective refractive index of optical waves propagating along the ring is modified. The sharp wavelength dependence of the high Q -factor resonator enhances the optical response to acoustic strain. High sensitivity is demonstrated experimentally in detecting broadband ultrasound pulses from a 10 MHz transducer. Methods of extending the technique to form multi-element ultrasonic arrays for imaging applications are proposed.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.1829775</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2004-11, Vol.85 (22), p.5418-5420</ispartof><rights>2004 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-4f14433baae82bd9e501e0f9cc185ec09e2322f79ec505772d15c3587e6e79593</citedby><cites>FETCH-LOGICAL-c385t-4f14433baae82bd9e501e0f9cc185ec09e2322f79ec505772d15c3587e6e79593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ashkenazi, Shai</creatorcontrib><creatorcontrib>Chao, Chung-Yen</creatorcontrib><creatorcontrib>Guo, L. Jay</creatorcontrib><creatorcontrib>O'Donnell, Matthew</creatorcontrib><title>Ultrasound detection using polymer microring optical resonator</title><title>Applied physics letters</title><description>Application of polymer waveguide microring resonators for high-frequency ultrasound detection is presented. The device consists of a microring optical resonator coupled to a straight optical waveguide which serves as input and output ports. Acoustic waves irradiating the ring waveguide induce strain modifying the waveguide cross section. As a consequence, the effective refractive index of optical waves propagating along the ring is modified. The sharp wavelength dependence of the high Q -factor resonator enhances the optical response to acoustic strain. High sensitivity is demonstrated experimentally in detecting broadband ultrasound pulses from a 10 MHz transducer. Methods of extending the technique to form multi-element ultrasonic arrays for imaging applications are proposed.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1jz1rwzAURUVpoW7aof_AawenepJlSUughH5BoEszC0V-Liq2ZSRlyL-vQ0I7dXrcx-FyDyH3QJdAG_4IS1BMSykuSAFUyooDqEtSUEp51WgB1-Qmpe85CsZ5QVbbPkebwn5syxYzuuzDWO6TH7_KKfSHAWM5eBdDPH7ClL2zfRkxhdHmEG_JVWf7hHfnuyDbl-fP9Vu1-Xh9Xz9tKseVyFXdQV1zvrMWFdu1GgUFpJ12DpRARzUyzlgnNTpBhZSsBeG4UBIblFpoviAPp955SUoROzNFP9h4MEDNUdyAOYvP7OrEJuezPfr8D__Zm197_gPO2WDs</recordid><startdate>20041129</startdate><enddate>20041129</enddate><creator>Ashkenazi, Shai</creator><creator>Chao, Chung-Yen</creator><creator>Guo, L. Jay</creator><creator>O'Donnell, Matthew</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20041129</creationdate><title>Ultrasound detection using polymer microring optical resonator</title><author>Ashkenazi, Shai ; Chao, Chung-Yen ; Guo, L. Jay ; O'Donnell, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-4f14433baae82bd9e501e0f9cc185ec09e2322f79ec505772d15c3587e6e79593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashkenazi, Shai</creatorcontrib><creatorcontrib>Chao, Chung-Yen</creatorcontrib><creatorcontrib>Guo, L. Jay</creatorcontrib><creatorcontrib>O'Donnell, Matthew</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashkenazi, Shai</au><au>Chao, Chung-Yen</au><au>Guo, L. Jay</au><au>O'Donnell, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasound detection using polymer microring optical resonator</atitle><jtitle>Applied physics letters</jtitle><date>2004-11-29</date><risdate>2004</risdate><volume>85</volume><issue>22</issue><spage>5418</spage><epage>5420</epage><pages>5418-5420</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Application of polymer waveguide microring resonators for high-frequency ultrasound detection is presented. The device consists of a microring optical resonator coupled to a straight optical waveguide which serves as input and output ports. Acoustic waves irradiating the ring waveguide induce strain modifying the waveguide cross section. As a consequence, the effective refractive index of optical waves propagating along the ring is modified. The sharp wavelength dependence of the high Q -factor resonator enhances the optical response to acoustic strain. High sensitivity is demonstrated experimentally in detecting broadband ultrasound pulses from a 10 MHz transducer. Methods of extending the technique to form multi-element ultrasonic arrays for imaging applications are proposed.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.1829775</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2004-11, Vol.85 (22), p.5418-5420
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_1829775
source AIP Journals Complete; AIP Digital Archive
title Ultrasound detection using polymer microring optical resonator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasound%20detection%20using%20polymer%20microring%20optical%20resonator&rft.jtitle=Applied%20physics%20letters&rft.au=Ashkenazi,%20Shai&rft.date=2004-11-29&rft.volume=85&rft.issue=22&rft.spage=5418&rft.epage=5420&rft.pages=5418-5420&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.1829775&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true