Nanoscale deposition of solid inks via thermal dip pen nanolithography
We demonstrate that nanolithography can be performed using a heated atomic force microscope (AFM) cantilever tip to control the deposition of a solid organic "ink." The ink, octadecylphosphonic acid (OPA), has a melting temperature near 100 ° C and can self-assemble on mica. Postdeposition...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2004-08, Vol.85 (9), p.1589-1591 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1591 |
---|---|
container_issue | 9 |
container_start_page | 1589 |
container_title | Applied physics letters |
container_volume | 85 |
creator | Sheehan, P. E. Whitman, L. J. King, William P. Nelson, Brent A. |
description | We demonstrate that nanolithography can be performed using a heated atomic force microscope (AFM) cantilever tip to control the deposition of a solid organic "ink." The ink, octadecylphosphonic acid (OPA), has a melting temperature near
100
°
C
and can self-assemble on mica. Postdeposition analysis shows that deposition occurs only when the cantilever tip is heated above OPA's melting temperature, that the deposited structure does not spread significantly while cooling, and that a cool tip coated with OPA does not contaminate the substrate during subsequent imaging. Single lines were written with a width of
100
nm
. This approach greatly expands the potential of dip pen nanolithography, allowing local control of deposition and deposition of materials typically immobile at room temperature, while avoiding potential problems arising from inadvertent deposition and postdeposition diffusion. |
doi_str_mv | 10.1063/1.1785860 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1785860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-90d43d17ed9ccb76a77b4ffe802e10601b7b64e2d7d0136b2f3afa33dccbd63</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMoWFcP_oNcPXTNdNqkvQiyuCosetB7SPNho92mJEXYf2-XXfTkaRh43mGel5BrYEtgHG9hCaKuas5OSAZMiBwB6lOSMcYw500F5-Qipc95rQrEjKxf1BCSVr2lxo4h-cmHgQZHU-i9oX74SvTbKzp1Nm5VT40f6WgHOsyx3k9d-Ihq7HaX5MypPtmr41yQt_XD--op37w-Pq_uN7nGGqe8YaZEA8KaRutWcCVEWzpna1bY-X0GrWh5aQsjDAPkbeFQOYVoZtpwXJCbw1UdQ0rROjlGv1VxJ4HJvb4EedSf2bsDm7Sf1N7qf_i3A_nXAf4AW2Jjgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoscale deposition of solid inks via thermal dip pen nanolithography</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Sheehan, P. E. ; Whitman, L. J. ; King, William P. ; Nelson, Brent A.</creator><creatorcontrib>Sheehan, P. E. ; Whitman, L. J. ; King, William P. ; Nelson, Brent A.</creatorcontrib><description>We demonstrate that nanolithography can be performed using a heated atomic force microscope (AFM) cantilever tip to control the deposition of a solid organic "ink." The ink, octadecylphosphonic acid (OPA), has a melting temperature near
100
°
C
and can self-assemble on mica. Postdeposition analysis shows that deposition occurs only when the cantilever tip is heated above OPA's melting temperature, that the deposited structure does not spread significantly while cooling, and that a cool tip coated with OPA does not contaminate the substrate during subsequent imaging. Single lines were written with a width of
100
nm
. This approach greatly expands the potential of dip pen nanolithography, allowing local control of deposition and deposition of materials typically immobile at room temperature, while avoiding potential problems arising from inadvertent deposition and postdeposition diffusion.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.1785860</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2004-08, Vol.85 (9), p.1589-1591</ispartof><rights>2004 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-90d43d17ed9ccb76a77b4ffe802e10601b7b64e2d7d0136b2f3afa33dccbd63</citedby><cites>FETCH-LOGICAL-c383t-90d43d17ed9ccb76a77b4ffe802e10601b7b64e2d7d0136b2f3afa33dccbd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sheehan, P. E.</creatorcontrib><creatorcontrib>Whitman, L. J.</creatorcontrib><creatorcontrib>King, William P.</creatorcontrib><creatorcontrib>Nelson, Brent A.</creatorcontrib><title>Nanoscale deposition of solid inks via thermal dip pen nanolithography</title><title>Applied physics letters</title><description>We demonstrate that nanolithography can be performed using a heated atomic force microscope (AFM) cantilever tip to control the deposition of a solid organic "ink." The ink, octadecylphosphonic acid (OPA), has a melting temperature near
100
°
C
and can self-assemble on mica. Postdeposition analysis shows that deposition occurs only when the cantilever tip is heated above OPA's melting temperature, that the deposited structure does not spread significantly while cooling, and that a cool tip coated with OPA does not contaminate the substrate during subsequent imaging. Single lines were written with a width of
100
nm
. This approach greatly expands the potential of dip pen nanolithography, allowing local control of deposition and deposition of materials typically immobile at room temperature, while avoiding potential problems arising from inadvertent deposition and postdeposition diffusion.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMoWFcP_oNcPXTNdNqkvQiyuCosetB7SPNho92mJEXYf2-XXfTkaRh43mGel5BrYEtgHG9hCaKuas5OSAZMiBwB6lOSMcYw500F5-Qipc95rQrEjKxf1BCSVr2lxo4h-cmHgQZHU-i9oX74SvTbKzp1Nm5VT40f6WgHOsyx3k9d-Ihq7HaX5MypPtmr41yQt_XD--op37w-Pq_uN7nGGqe8YaZEA8KaRutWcCVEWzpna1bY-X0GrWh5aQsjDAPkbeFQOYVoZtpwXJCbw1UdQ0rROjlGv1VxJ4HJvb4EedSf2bsDm7Sf1N7qf_i3A_nXAf4AW2Jjgw</recordid><startdate>20040830</startdate><enddate>20040830</enddate><creator>Sheehan, P. E.</creator><creator>Whitman, L. J.</creator><creator>King, William P.</creator><creator>Nelson, Brent A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040830</creationdate><title>Nanoscale deposition of solid inks via thermal dip pen nanolithography</title><author>Sheehan, P. E. ; Whitman, L. J. ; King, William P. ; Nelson, Brent A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-90d43d17ed9ccb76a77b4ffe802e10601b7b64e2d7d0136b2f3afa33dccbd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheehan, P. E.</creatorcontrib><creatorcontrib>Whitman, L. J.</creatorcontrib><creatorcontrib>King, William P.</creatorcontrib><creatorcontrib>Nelson, Brent A.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheehan, P. E.</au><au>Whitman, L. J.</au><au>King, William P.</au><au>Nelson, Brent A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale deposition of solid inks via thermal dip pen nanolithography</atitle><jtitle>Applied physics letters</jtitle><date>2004-08-30</date><risdate>2004</risdate><volume>85</volume><issue>9</issue><spage>1589</spage><epage>1591</epage><pages>1589-1591</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We demonstrate that nanolithography can be performed using a heated atomic force microscope (AFM) cantilever tip to control the deposition of a solid organic "ink." The ink, octadecylphosphonic acid (OPA), has a melting temperature near
100
°
C
and can self-assemble on mica. Postdeposition analysis shows that deposition occurs only when the cantilever tip is heated above OPA's melting temperature, that the deposited structure does not spread significantly while cooling, and that a cool tip coated with OPA does not contaminate the substrate during subsequent imaging. Single lines were written with a width of
100
nm
. This approach greatly expands the potential of dip pen nanolithography, allowing local control of deposition and deposition of materials typically immobile at room temperature, while avoiding potential problems arising from inadvertent deposition and postdeposition diffusion.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.1785860</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2004-08, Vol.85 (9), p.1589-1591 |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1785860 |
source | AIP Journals Complete; AIP Digital Archive |
title | Nanoscale deposition of solid inks via thermal dip pen nanolithography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A16%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20deposition%20of%20solid%20inks%20via%20thermal%20dip%20pen%20nanolithography&rft.jtitle=Applied%20physics%20letters&rft.au=Sheehan,%20P.%20E.&rft.date=2004-08-30&rft.volume=85&rft.issue=9&rft.spage=1589&rft.epage=1591&rft.pages=1589-1591&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.1785860&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |