Transport Properties of Ionized Monatomic Gases

Expressions are developed with the Chapman‐Enskog‐Burnett method for the third and fourth approximations to the thermal conductivity and the diffusion coefficients, and for the second approximation to the viscosity of multicomponent gas mixtures. Special forms of these expressions are then derived f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Physics of fluids (1958) 1966-06, Vol.9 (6), p.1230-1240
1. Verfasser: Devoto, R. S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1240
container_issue 6
container_start_page 1230
container_title The Physics of fluids (1958)
container_volume 9
creator Devoto, R. S.
description Expressions are developed with the Chapman‐Enskog‐Burnett method for the third and fourth approximations to the thermal conductivity and the diffusion coefficients, and for the second approximation to the viscosity of multicomponent gas mixtures. Special forms of these expressions are then derived for application to ionized gas mixtures, in particular to the partially ionized gas. Convergence of the approximations is checked by computing the properties of fully ionized hydrogen and of several other mixtures where the molecules interact with inverse‐power repulsive potentials. From the results for hydrogen, it is seen that at least the third approximation should be used for the thermal conductivity and thermal diffusion coefficient, and the second approximation for the electrical conductivity and viscosity of ionized gases. These results contrast with those for un‐ionized gases where one lower level of approximation is generally adequate.
doi_str_mv 10.1063/1.1761825
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1761825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1761825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-96a3cae260f23f39c4f6c242e2205c592c27deb7ddf495fde6e3f800492125253</originalsourceid><addsrcrecordid>eNp9z01LAzEUheEgCo7Vhf9gtgrT3nvzMZOlFG0LLbqo6yFmEojYyZBko79epV13dTYPB17G7hHmCIovcI6two7kBasIFW-E1t0lqwA4NhpbvGY3OX8CkEDBK7bYJzPmKaZSv6U4uVSCy3X09SaO4ccN9S6OpsRDsPXKZJdv2ZU3X9ndnXbG3l-e98t1s31dbZZP28aSEqXRynBrHCnwxD3XVnhlSZAjAmmlJkvt4D7aYfBCSz845bjvAIQmJEmSz9jD8demmHNyvp9SOJj03SP0_6U99qfSP_t4tNmGYkqI4xn8C6XbUfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transport Properties of Ionized Monatomic Gases</title><source>Alma/SFX Local Collection</source><creator>Devoto, R. S.</creator><creatorcontrib>Devoto, R. S.</creatorcontrib><description>Expressions are developed with the Chapman‐Enskog‐Burnett method for the third and fourth approximations to the thermal conductivity and the diffusion coefficients, and for the second approximation to the viscosity of multicomponent gas mixtures. Special forms of these expressions are then derived for application to ionized gas mixtures, in particular to the partially ionized gas. Convergence of the approximations is checked by computing the properties of fully ionized hydrogen and of several other mixtures where the molecules interact with inverse‐power repulsive potentials. From the results for hydrogen, it is seen that at least the third approximation should be used for the thermal conductivity and thermal diffusion coefficient, and the second approximation for the electrical conductivity and viscosity of ionized gases. These results contrast with those for un‐ionized gases where one lower level of approximation is generally adequate.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.1761825</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><ispartof>The Physics of fluids (1958), 1966-06, Vol.9 (6), p.1230-1240</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-96a3cae260f23f39c4f6c242e2205c592c27deb7ddf495fde6e3f800492125253</citedby><cites>FETCH-LOGICAL-c264t-96a3cae260f23f39c4f6c242e2205c592c27deb7ddf495fde6e3f800492125253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Devoto, R. S.</creatorcontrib><title>Transport Properties of Ionized Monatomic Gases</title><title>The Physics of fluids (1958)</title><description>Expressions are developed with the Chapman‐Enskog‐Burnett method for the third and fourth approximations to the thermal conductivity and the diffusion coefficients, and for the second approximation to the viscosity of multicomponent gas mixtures. Special forms of these expressions are then derived for application to ionized gas mixtures, in particular to the partially ionized gas. Convergence of the approximations is checked by computing the properties of fully ionized hydrogen and of several other mixtures where the molecules interact with inverse‐power repulsive potentials. From the results for hydrogen, it is seen that at least the third approximation should be used for the thermal conductivity and thermal diffusion coefficient, and the second approximation for the electrical conductivity and viscosity of ionized gases. These results contrast with those for un‐ionized gases where one lower level of approximation is generally adequate.</description><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1966</creationdate><recordtype>article</recordtype><recordid>eNp9z01LAzEUheEgCo7Vhf9gtgrT3nvzMZOlFG0LLbqo6yFmEojYyZBko79epV13dTYPB17G7hHmCIovcI6two7kBasIFW-E1t0lqwA4NhpbvGY3OX8CkEDBK7bYJzPmKaZSv6U4uVSCy3X09SaO4ccN9S6OpsRDsPXKZJdv2ZU3X9ndnXbG3l-e98t1s31dbZZP28aSEqXRynBrHCnwxD3XVnhlSZAjAmmlJkvt4D7aYfBCSz845bjvAIQmJEmSz9jD8demmHNyvp9SOJj03SP0_6U99qfSP_t4tNmGYkqI4xn8C6XbUfI</recordid><startdate>196606</startdate><enddate>196606</enddate><creator>Devoto, R. S.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>196606</creationdate><title>Transport Properties of Ionized Monatomic Gases</title><author>Devoto, R. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-96a3cae260f23f39c4f6c242e2205c592c27deb7ddf495fde6e3f800492125253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1966</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devoto, R. S.</creatorcontrib><collection>CrossRef</collection><jtitle>The Physics of fluids (1958)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devoto, R. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport Properties of Ionized Monatomic Gases</atitle><jtitle>The Physics of fluids (1958)</jtitle><date>1966-06</date><risdate>1966</risdate><volume>9</volume><issue>6</issue><spage>1230</spage><epage>1240</epage><pages>1230-1240</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>Expressions are developed with the Chapman‐Enskog‐Burnett method for the third and fourth approximations to the thermal conductivity and the diffusion coefficients, and for the second approximation to the viscosity of multicomponent gas mixtures. Special forms of these expressions are then derived for application to ionized gas mixtures, in particular to the partially ionized gas. Convergence of the approximations is checked by computing the properties of fully ionized hydrogen and of several other mixtures where the molecules interact with inverse‐power repulsive potentials. From the results for hydrogen, it is seen that at least the third approximation should be used for the thermal conductivity and thermal diffusion coefficient, and the second approximation for the electrical conductivity and viscosity of ionized gases. These results contrast with those for un‐ionized gases where one lower level of approximation is generally adequate.</abstract><doi>10.1063/1.1761825</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9171
ispartof The Physics of fluids (1958), 1966-06, Vol.9 (6), p.1230-1240
issn 0031-9171
2163-4998
language eng
recordid cdi_crossref_primary_10_1063_1_1761825
source Alma/SFX Local Collection
title Transport Properties of Ionized Monatomic Gases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20Properties%20of%20Ionized%20Monatomic%20Gases&rft.jtitle=The%20Physics%20of%20fluids%20(1958)&rft.au=Devoto,%20R.%20S.&rft.date=1966-06&rft.volume=9&rft.issue=6&rft.spage=1230&rft.epage=1240&rft.pages=1230-1240&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.1761825&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_1761825%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true