Influence of Tensor Conductivity on Current Distribution in a MHD Generator

Magnetohydrodynamic generators may operate under conditions such that the product of electron cyclotron frequency and mean collision time is not small compared to unity. Accordingly the electrical conductivity is a tensor rather than a scalar quantity. The influence of tensor conductivity on the ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Physics (U.S.) 1961-02, Vol.32 (2), p.205-216
Hauptverfasser: Hurwitz, H., Kilb, R. W., Sutton, G. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue 2
container_start_page 205
container_title Journal of Applied Physics (U.S.)
container_volume 32
creator Hurwitz, H.
Kilb, R. W.
Sutton, G. W.
description Magnetohydrodynamic generators may operate under conditions such that the product of electron cyclotron frequency and mean collision time is not small compared to unity. Accordingly the electrical conductivity is a tensor rather than a scalar quantity. The influence of tensor conductivity on the electrical current distribution has been investigated in two idealized situations, one pertaining to the entrance and exit regions of the generator and the other pertaining to the region near segmented electrodes. The calculations predict modifications of the internal impedance of the generator which can be described in terms of increases in the effective duct length and width.
doi_str_mv 10.1063/1.1735979
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1735979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1735979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-8b733fce81f2976c52454dd411ba6e4cd4ff2f8283435ac981744c20f1f60ae03</originalsourceid><addsrcrecordid>eNotkM1KAzEURoMoWKsL3yC4czH13vzMZJYy1bZYcVPXQ5pJMFITSTJC396WdvXB4fAtDiH3CDOEmj_hDBsu26a9IBME1VaNlHBJJgAMK3Xg1-Qm528ARMXbCXlbBbcbbTCWRkc3NuSYaBfDMJri_3zZ0xhoN6ZkQ6Fzn0vy27H4A_SBavq-nNOFDTbpEtMtuXJ6l-3deafk8_Vl0y2r9cdi1T2vK8MZK5XaNpw7YxU61ja1kUxIMQwCcatrK8wgnGNOMcUFl9q0ChshDAOHrgZtgU_Jw-k35uL7bHyx5svEEKwpvQDFQMiD9HiSTIo5J-v63-R_dNr3CP0xVY_9ORX_Bwf2Wio</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of Tensor Conductivity on Current Distribution in a MHD Generator</title><source>AIP Digital Archive</source><creator>Hurwitz, H. ; Kilb, R. W. ; Sutton, G. W.</creator><creatorcontrib>Hurwitz, H. ; Kilb, R. W. ; Sutton, G. W. ; General Electric Research Lab., Schenectady, N.Y</creatorcontrib><description>Magnetohydrodynamic generators may operate under conditions such that the product of electron cyclotron frequency and mean collision time is not small compared to unity. Accordingly the electrical conductivity is a tensor rather than a scalar quantity. The influence of tensor conductivity on the electrical current distribution has been investigated in two idealized situations, one pertaining to the entrance and exit regions of the generator and the other pertaining to the region near segmented electrodes. The calculations predict modifications of the internal impedance of the generator which can be described in terms of increases in the effective duct length and width.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1735979</identifier><language>eng</language><subject>CURRENTS ; CYCLOTRONS ; DISTRIBUTION ; ELECTRIC CONDUCTIVITY ; ELECTRODES ; ELECTRONS ; FREQUENCY ; GENERATORS ; INTERACTIONS ; MAGNETOHYDRODYNAMICS ; PHYSICS ; TENSORS ; VECTORS</subject><ispartof>Journal of Applied Physics (U.S.), 1961-02, Vol.32 (2), p.205-216</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-8b733fce81f2976c52454dd411ba6e4cd4ff2f8283435ac981744c20f1f60ae03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4082045$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hurwitz, H.</creatorcontrib><creatorcontrib>Kilb, R. W.</creatorcontrib><creatorcontrib>Sutton, G. W.</creatorcontrib><creatorcontrib>General Electric Research Lab., Schenectady, N.Y</creatorcontrib><title>Influence of Tensor Conductivity on Current Distribution in a MHD Generator</title><title>Journal of Applied Physics (U.S.)</title><description>Magnetohydrodynamic generators may operate under conditions such that the product of electron cyclotron frequency and mean collision time is not small compared to unity. Accordingly the electrical conductivity is a tensor rather than a scalar quantity. The influence of tensor conductivity on the electrical current distribution has been investigated in two idealized situations, one pertaining to the entrance and exit regions of the generator and the other pertaining to the region near segmented electrodes. The calculations predict modifications of the internal impedance of the generator which can be described in terms of increases in the effective duct length and width.</description><subject>CURRENTS</subject><subject>CYCLOTRONS</subject><subject>DISTRIBUTION</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>ELECTRODES</subject><subject>ELECTRONS</subject><subject>FREQUENCY</subject><subject>GENERATORS</subject><subject>INTERACTIONS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>PHYSICS</subject><subject>TENSORS</subject><subject>VECTORS</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1961</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEURoMoWKsL3yC4czH13vzMZJYy1bZYcVPXQ5pJMFITSTJC396WdvXB4fAtDiH3CDOEmj_hDBsu26a9IBME1VaNlHBJJgAMK3Xg1-Qm528ARMXbCXlbBbcbbTCWRkc3NuSYaBfDMJri_3zZ0xhoN6ZkQ6Fzn0vy27H4A_SBavq-nNOFDTbpEtMtuXJ6l-3deafk8_Vl0y2r9cdi1T2vK8MZK5XaNpw7YxU61ja1kUxIMQwCcatrK8wgnGNOMcUFl9q0ChshDAOHrgZtgU_Jw-k35uL7bHyx5svEEKwpvQDFQMiD9HiSTIo5J-v63-R_dNr3CP0xVY_9ORX_Bwf2Wio</recordid><startdate>19610201</startdate><enddate>19610201</enddate><creator>Hurwitz, H.</creator><creator>Kilb, R. W.</creator><creator>Sutton, G. W.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19610201</creationdate><title>Influence of Tensor Conductivity on Current Distribution in a MHD Generator</title><author>Hurwitz, H. ; Kilb, R. W. ; Sutton, G. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-8b733fce81f2976c52454dd411ba6e4cd4ff2f8283435ac981744c20f1f60ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1961</creationdate><topic>CURRENTS</topic><topic>CYCLOTRONS</topic><topic>DISTRIBUTION</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>ELECTRODES</topic><topic>ELECTRONS</topic><topic>FREQUENCY</topic><topic>GENERATORS</topic><topic>INTERACTIONS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>PHYSICS</topic><topic>TENSORS</topic><topic>VECTORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurwitz, H.</creatorcontrib><creatorcontrib>Kilb, R. W.</creatorcontrib><creatorcontrib>Sutton, G. W.</creatorcontrib><creatorcontrib>General Electric Research Lab., Schenectady, N.Y</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of Applied Physics (U.S.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurwitz, H.</au><au>Kilb, R. W.</au><au>Sutton, G. W.</au><aucorp>General Electric Research Lab., Schenectady, N.Y</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Tensor Conductivity on Current Distribution in a MHD Generator</atitle><jtitle>Journal of Applied Physics (U.S.)</jtitle><date>1961-02-01</date><risdate>1961</risdate><volume>32</volume><issue>2</issue><spage>205</spage><epage>216</epage><pages>205-216</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Magnetohydrodynamic generators may operate under conditions such that the product of electron cyclotron frequency and mean collision time is not small compared to unity. Accordingly the electrical conductivity is a tensor rather than a scalar quantity. The influence of tensor conductivity on the electrical current distribution has been investigated in two idealized situations, one pertaining to the entrance and exit regions of the generator and the other pertaining to the region near segmented electrodes. The calculations predict modifications of the internal impedance of the generator which can be described in terms of increases in the effective duct length and width.</abstract><doi>10.1063/1.1735979</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of Applied Physics (U.S.), 1961-02, Vol.32 (2), p.205-216
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_1735979
source AIP Digital Archive
subjects CURRENTS
CYCLOTRONS
DISTRIBUTION
ELECTRIC CONDUCTIVITY
ELECTRODES
ELECTRONS
FREQUENCY
GENERATORS
INTERACTIONS
MAGNETOHYDRODYNAMICS
PHYSICS
TENSORS
VECTORS
title Influence of Tensor Conductivity on Current Distribution in a MHD Generator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Tensor%20Conductivity%20on%20Current%20Distribution%20in%20a%20MHD%20Generator&rft.jtitle=Journal%20of%20Applied%20Physics%20(U.S.)&rft.au=Hurwitz,%20H.&rft.aucorp=General%20Electric%20Research%20Lab.,%20Schenectady,%20N.Y&rft.date=1961-02-01&rft.volume=32&rft.issue=2&rft.spage=205&rft.epage=216&rft.pages=205-216&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1735979&rft_dat=%3Ccrossref_osti_%3E10_1063_1_1735979%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true