Influence of Tensor Conductivity on Current Distribution in a MHD Generator
Magnetohydrodynamic generators may operate under conditions such that the product of electron cyclotron frequency and mean collision time is not small compared to unity. Accordingly the electrical conductivity is a tensor rather than a scalar quantity. The influence of tensor conductivity on the ele...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Physics (U.S.) 1961-02, Vol.32 (2), p.205-216 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 216 |
---|---|
container_issue | 2 |
container_start_page | 205 |
container_title | Journal of Applied Physics (U.S.) |
container_volume | 32 |
creator | Hurwitz, H. Kilb, R. W. Sutton, G. W. |
description | Magnetohydrodynamic generators may operate under conditions such that the product of electron cyclotron frequency and mean collision time is not small compared to unity. Accordingly the electrical conductivity is a tensor rather than a scalar quantity. The influence of tensor conductivity on the electrical current distribution has been investigated in two idealized situations, one pertaining to the entrance and exit regions of the generator and the other pertaining to the region near segmented electrodes. The calculations predict modifications of the internal impedance of the generator which can be described in terms of increases in the effective duct length and width. |
doi_str_mv | 10.1063/1.1735979 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1735979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1735979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-8b733fce81f2976c52454dd411ba6e4cd4ff2f8283435ac981744c20f1f60ae03</originalsourceid><addsrcrecordid>eNotkM1KAzEURoMoWKsL3yC4czH13vzMZJYy1bZYcVPXQ5pJMFITSTJC396WdvXB4fAtDiH3CDOEmj_hDBsu26a9IBME1VaNlHBJJgAMK3Xg1-Qm528ARMXbCXlbBbcbbTCWRkc3NuSYaBfDMJri_3zZ0xhoN6ZkQ6Fzn0vy27H4A_SBavq-nNOFDTbpEtMtuXJ6l-3deafk8_Vl0y2r9cdi1T2vK8MZK5XaNpw7YxU61ja1kUxIMQwCcatrK8wgnGNOMcUFl9q0ChshDAOHrgZtgU_Jw-k35uL7bHyx5svEEKwpvQDFQMiD9HiSTIo5J-v63-R_dNr3CP0xVY_9ORX_Bwf2Wio</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of Tensor Conductivity on Current Distribution in a MHD Generator</title><source>AIP Digital Archive</source><creator>Hurwitz, H. ; Kilb, R. W. ; Sutton, G. W.</creator><creatorcontrib>Hurwitz, H. ; Kilb, R. W. ; Sutton, G. W. ; General Electric Research Lab., Schenectady, N.Y</creatorcontrib><description>Magnetohydrodynamic generators may operate under conditions such that the product of electron cyclotron frequency and mean collision time is not small compared to unity. Accordingly the electrical conductivity is a tensor rather than a scalar quantity. The influence of tensor conductivity on the electrical current distribution has been investigated in two idealized situations, one pertaining to the entrance and exit regions of the generator and the other pertaining to the region near segmented electrodes. The calculations predict modifications of the internal impedance of the generator which can be described in terms of increases in the effective duct length and width.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1735979</identifier><language>eng</language><subject>CURRENTS ; CYCLOTRONS ; DISTRIBUTION ; ELECTRIC CONDUCTIVITY ; ELECTRODES ; ELECTRONS ; FREQUENCY ; GENERATORS ; INTERACTIONS ; MAGNETOHYDRODYNAMICS ; PHYSICS ; TENSORS ; VECTORS</subject><ispartof>Journal of Applied Physics (U.S.), 1961-02, Vol.32 (2), p.205-216</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-8b733fce81f2976c52454dd411ba6e4cd4ff2f8283435ac981744c20f1f60ae03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4082045$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hurwitz, H.</creatorcontrib><creatorcontrib>Kilb, R. W.</creatorcontrib><creatorcontrib>Sutton, G. W.</creatorcontrib><creatorcontrib>General Electric Research Lab., Schenectady, N.Y</creatorcontrib><title>Influence of Tensor Conductivity on Current Distribution in a MHD Generator</title><title>Journal of Applied Physics (U.S.)</title><description>Magnetohydrodynamic generators may operate under conditions such that the product of electron cyclotron frequency and mean collision time is not small compared to unity. Accordingly the electrical conductivity is a tensor rather than a scalar quantity. The influence of tensor conductivity on the electrical current distribution has been investigated in two idealized situations, one pertaining to the entrance and exit regions of the generator and the other pertaining to the region near segmented electrodes. The calculations predict modifications of the internal impedance of the generator which can be described in terms of increases in the effective duct length and width.</description><subject>CURRENTS</subject><subject>CYCLOTRONS</subject><subject>DISTRIBUTION</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>ELECTRODES</subject><subject>ELECTRONS</subject><subject>FREQUENCY</subject><subject>GENERATORS</subject><subject>INTERACTIONS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>PHYSICS</subject><subject>TENSORS</subject><subject>VECTORS</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1961</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEURoMoWKsL3yC4czH13vzMZJYy1bZYcVPXQ5pJMFITSTJC396WdvXB4fAtDiH3CDOEmj_hDBsu26a9IBME1VaNlHBJJgAMK3Xg1-Qm528ARMXbCXlbBbcbbTCWRkc3NuSYaBfDMJri_3zZ0xhoN6ZkQ6Fzn0vy27H4A_SBavq-nNOFDTbpEtMtuXJ6l-3deafk8_Vl0y2r9cdi1T2vK8MZK5XaNpw7YxU61ja1kUxIMQwCcatrK8wgnGNOMcUFl9q0ChshDAOHrgZtgU_Jw-k35uL7bHyx5svEEKwpvQDFQMiD9HiSTIo5J-v63-R_dNr3CP0xVY_9ORX_Bwf2Wio</recordid><startdate>19610201</startdate><enddate>19610201</enddate><creator>Hurwitz, H.</creator><creator>Kilb, R. W.</creator><creator>Sutton, G. W.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19610201</creationdate><title>Influence of Tensor Conductivity on Current Distribution in a MHD Generator</title><author>Hurwitz, H. ; Kilb, R. W. ; Sutton, G. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-8b733fce81f2976c52454dd411ba6e4cd4ff2f8283435ac981744c20f1f60ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1961</creationdate><topic>CURRENTS</topic><topic>CYCLOTRONS</topic><topic>DISTRIBUTION</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>ELECTRODES</topic><topic>ELECTRONS</topic><topic>FREQUENCY</topic><topic>GENERATORS</topic><topic>INTERACTIONS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>PHYSICS</topic><topic>TENSORS</topic><topic>VECTORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurwitz, H.</creatorcontrib><creatorcontrib>Kilb, R. W.</creatorcontrib><creatorcontrib>Sutton, G. W.</creatorcontrib><creatorcontrib>General Electric Research Lab., Schenectady, N.Y</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of Applied Physics (U.S.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurwitz, H.</au><au>Kilb, R. W.</au><au>Sutton, G. W.</au><aucorp>General Electric Research Lab., Schenectady, N.Y</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Tensor Conductivity on Current Distribution in a MHD Generator</atitle><jtitle>Journal of Applied Physics (U.S.)</jtitle><date>1961-02-01</date><risdate>1961</risdate><volume>32</volume><issue>2</issue><spage>205</spage><epage>216</epage><pages>205-216</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Magnetohydrodynamic generators may operate under conditions such that the product of electron cyclotron frequency and mean collision time is not small compared to unity. Accordingly the electrical conductivity is a tensor rather than a scalar quantity. The influence of tensor conductivity on the electrical current distribution has been investigated in two idealized situations, one pertaining to the entrance and exit regions of the generator and the other pertaining to the region near segmented electrodes. The calculations predict modifications of the internal impedance of the generator which can be described in terms of increases in the effective duct length and width.</abstract><doi>10.1063/1.1735979</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of Applied Physics (U.S.), 1961-02, Vol.32 (2), p.205-216 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1735979 |
source | AIP Digital Archive |
subjects | CURRENTS CYCLOTRONS DISTRIBUTION ELECTRIC CONDUCTIVITY ELECTRODES ELECTRONS FREQUENCY GENERATORS INTERACTIONS MAGNETOHYDRODYNAMICS PHYSICS TENSORS VECTORS |
title | Influence of Tensor Conductivity on Current Distribution in a MHD Generator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Tensor%20Conductivity%20on%20Current%20Distribution%20in%20a%20MHD%20Generator&rft.jtitle=Journal%20of%20Applied%20Physics%20(U.S.)&rft.au=Hurwitz,%20H.&rft.aucorp=General%20Electric%20Research%20Lab.,%20Schenectady,%20N.Y&rft.date=1961-02-01&rft.volume=32&rft.issue=2&rft.spage=205&rft.epage=216&rft.pages=205-216&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1735979&rft_dat=%3Ccrossref_osti_%3E10_1063_1_1735979%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |