Fundamental limits to detection of low-energy ions using silicon solid-state detectors

Recent advances in solid-state detector (SSD) technology have demonstrated the detection of ions and electrons down to 1 keV. However, ions at keV energies lose a substantial amount of energy ΔN in a SSD through Coulombic interactions with target nuclei rather than through interactions that contribu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2004-05, Vol.84 (18), p.3552-3554
Hauptverfasser: Funsten, H. O., Ritzau, S. M., Harper, R. W., Korde, R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3554
container_issue 18
container_start_page 3552
container_title Applied physics letters
container_volume 84
creator Funsten, H. O.
Ritzau, S. M.
Harper, R. W.
Korde, R.
description Recent advances in solid-state detector (SSD) technology have demonstrated the detection of ions and electrons down to 1 keV. However, ions at keV energies lose a substantial amount of energy ΔN in a SSD through Coulombic interactions with target nuclei rather than through interactions that contribute to the SSD output pulse, whose magnitude is a measure of the ion’s incident energy. Because ΔN depends on the ion species, detector material, and interaction physics, it represents a fundamental limitation of the output pulse magnitude of the detector. Using 100% quantum collection efficiency silicon photodiodes with a thin (40–60 Å) SiO2 passivation layer, we accurately quantify ΔN for incident 1–120 keV ions and, therefore, evaluate the detection limits of keV ions using silicon detectors.
doi_str_mv 10.1063/1.1719272
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1719272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1719272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e2e3ba1b816d0e1da548a74da049daddbd3cd9c1cb1ecf3b7a19f251b42a43623</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMouFYP_oNcPaTmTfYrRynWCgUv6nV587Elkt1IkiL9967Y0zDDzBweQu6Br4G38hHW0IESnbggFfCuYxKgvyQV51yyVjVwTW5y_lpsI6SsyOf2OFuc3Fww0OAnXzItkVpXnCk-zjSONMQf5maXDie6JJkes58PNPvgzVLIMXjLcsHizrOY8i25GjFkd3fWFfnYPr9vdmz_9vK6edozI5QszAknNYLuobXcgcWm7rGrLfJaWbRWW2msMmA0ODNK3SGoUTSga4G1bIVckYf_X5NizsmNw3fyE6bTAHz4AzLAcAYifwHZ-FTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fundamental limits to detection of low-energy ions using silicon solid-state detectors</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Funsten, H. O. ; Ritzau, S. M. ; Harper, R. W. ; Korde, R.</creator><creatorcontrib>Funsten, H. O. ; Ritzau, S. M. ; Harper, R. W. ; Korde, R.</creatorcontrib><description>Recent advances in solid-state detector (SSD) technology have demonstrated the detection of ions and electrons down to 1 keV. However, ions at keV energies lose a substantial amount of energy ΔN in a SSD through Coulombic interactions with target nuclei rather than through interactions that contribute to the SSD output pulse, whose magnitude is a measure of the ion’s incident energy. Because ΔN depends on the ion species, detector material, and interaction physics, it represents a fundamental limitation of the output pulse magnitude of the detector. Using 100% quantum collection efficiency silicon photodiodes with a thin (40–60 Å) SiO2 passivation layer, we accurately quantify ΔN for incident 1–120 keV ions and, therefore, evaluate the detection limits of keV ions using silicon detectors.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.1719272</identifier><language>eng</language><ispartof>Applied physics letters, 2004-05, Vol.84 (18), p.3552-3554</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e2e3ba1b816d0e1da548a74da049daddbd3cd9c1cb1ecf3b7a19f251b42a43623</citedby><cites>FETCH-LOGICAL-c293t-e2e3ba1b816d0e1da548a74da049daddbd3cd9c1cb1ecf3b7a19f251b42a43623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Funsten, H. O.</creatorcontrib><creatorcontrib>Ritzau, S. M.</creatorcontrib><creatorcontrib>Harper, R. W.</creatorcontrib><creatorcontrib>Korde, R.</creatorcontrib><title>Fundamental limits to detection of low-energy ions using silicon solid-state detectors</title><title>Applied physics letters</title><description>Recent advances in solid-state detector (SSD) technology have demonstrated the detection of ions and electrons down to 1 keV. However, ions at keV energies lose a substantial amount of energy ΔN in a SSD through Coulombic interactions with target nuclei rather than through interactions that contribute to the SSD output pulse, whose magnitude is a measure of the ion’s incident energy. Because ΔN depends on the ion species, detector material, and interaction physics, it represents a fundamental limitation of the output pulse magnitude of the detector. Using 100% quantum collection efficiency silicon photodiodes with a thin (40–60 Å) SiO2 passivation layer, we accurately quantify ΔN for incident 1–120 keV ions and, therefore, evaluate the detection limits of keV ions using silicon detectors.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMouFYP_oNcPaTmTfYrRynWCgUv6nV587Elkt1IkiL9967Y0zDDzBweQu6Br4G38hHW0IESnbggFfCuYxKgvyQV51yyVjVwTW5y_lpsI6SsyOf2OFuc3Fww0OAnXzItkVpXnCk-zjSONMQf5maXDie6JJkes58PNPvgzVLIMXjLcsHizrOY8i25GjFkd3fWFfnYPr9vdmz_9vK6edozI5QszAknNYLuobXcgcWm7rGrLfJaWbRWW2msMmA0ODNK3SGoUTSga4G1bIVckYf_X5NizsmNw3fyE6bTAHz4AzLAcAYifwHZ-FTY</recordid><startdate>20040503</startdate><enddate>20040503</enddate><creator>Funsten, H. O.</creator><creator>Ritzau, S. M.</creator><creator>Harper, R. W.</creator><creator>Korde, R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040503</creationdate><title>Fundamental limits to detection of low-energy ions using silicon solid-state detectors</title><author>Funsten, H. O. ; Ritzau, S. M. ; Harper, R. W. ; Korde, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e2e3ba1b816d0e1da548a74da049daddbd3cd9c1cb1ecf3b7a19f251b42a43623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Funsten, H. O.</creatorcontrib><creatorcontrib>Ritzau, S. M.</creatorcontrib><creatorcontrib>Harper, R. W.</creatorcontrib><creatorcontrib>Korde, R.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Funsten, H. O.</au><au>Ritzau, S. M.</au><au>Harper, R. W.</au><au>Korde, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamental limits to detection of low-energy ions using silicon solid-state detectors</atitle><jtitle>Applied physics letters</jtitle><date>2004-05-03</date><risdate>2004</risdate><volume>84</volume><issue>18</issue><spage>3552</spage><epage>3554</epage><pages>3552-3554</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Recent advances in solid-state detector (SSD) technology have demonstrated the detection of ions and electrons down to 1 keV. However, ions at keV energies lose a substantial amount of energy ΔN in a SSD through Coulombic interactions with target nuclei rather than through interactions that contribute to the SSD output pulse, whose magnitude is a measure of the ion’s incident energy. Because ΔN depends on the ion species, detector material, and interaction physics, it represents a fundamental limitation of the output pulse magnitude of the detector. Using 100% quantum collection efficiency silicon photodiodes with a thin (40–60 Å) SiO2 passivation layer, we accurately quantify ΔN for incident 1–120 keV ions and, therefore, evaluate the detection limits of keV ions using silicon detectors.</abstract><doi>10.1063/1.1719272</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2004-05, Vol.84 (18), p.3552-3554
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_1719272
source AIP Journals Complete; AIP Digital Archive
title Fundamental limits to detection of low-energy ions using silicon solid-state detectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamental%20limits%20to%20detection%20of%20low-energy%20ions%20using%20silicon%20solid-state%20detectors&rft.jtitle=Applied%20physics%20letters&rft.au=Funsten,%20H.%20O.&rft.date=2004-05-03&rft.volume=84&rft.issue=18&rft.spage=3552&rft.epage=3554&rft.pages=3552-3554&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.1719272&rft_dat=%3Ccrossref%3E10_1063_1_1719272%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true