Microwave Double‐Sweep Method for Analysis of Time‐Dependent Cavity Characteristics

The impedance of a microwave cavity whose characteristics are time‐dependent, as caused for example by a contained gaseous discharge afterglow, can be examined by means of a frequency‐modulated search signal and a swept receiver. The intersection of the search‐signal frequency and the acceptance fre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 1958-11, Vol.29 (11), p.999-1003
1. Verfasser: Ruthberg, Stanley
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1003
container_issue 11
container_start_page 999
container_title Review of scientific instruments
container_volume 29
creator Ruthberg, Stanley
description The impedance of a microwave cavity whose characteristics are time‐dependent, as caused for example by a contained gaseous discharge afterglow, can be examined by means of a frequency‐modulated search signal and a swept receiver. The intersection of the search‐signal frequency and the acceptance frequency of the receiver results in a pulse whose shape is sensitive to cavity resonance. The time of occurrence of the pulse depends upon signal‐to‐receiver phase. This in combination with the measured receiver dispersion allows measurement of reflection coefficient and frequency shifts smaller than the readability of a precision wavemeter at 10 kMc. Problems of oscillator tuning are mitigated and special stabilization procedures are eliminated. Only standard components are used.
doi_str_mv 10.1063/1.1716079
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1716079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>rsi</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-16a2cf0c03dd5b01ae61798bccbe7236166aea8fea9e6bef810d648e068c590c3</originalsourceid><addsrcrecordid>eNp90M1Kw0AUBeBBFKzVhW8wW4XUe5NmMlmW1D9ocWHFZZhM7tCRNgkzY0t3PoLP6JPY0qILwbu5m48D5zB2iTBAEMkNDjBDAVl-xHoIMo8yESfHrAeQDCORDeUpO_P-DbaXIvbY69Rq167Vivi4fa8W9PXx-bwm6viUwrytuWkdHzVqsfHW89bwmV3uzJg6ampqAi_UyoYNL-bKKR3IWR-s9ufsxKiFp4vD77OXu9tZ8RBNnu4fi9Ek0nGahwiFirUBDUldpxWgIoFZLiutK8riRKAQipQ0pHISFRmJUIuhJBBSpznopM-u9rnbFt47MmXn7FK5TYlQ7hYpsTwssrXXe-u1DSrYtvnBq9b9wrKrzX_4b_I3h2xyag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microwave Double‐Sweep Method for Analysis of Time‐Dependent Cavity Characteristics</title><source>AIP Digital Archive</source><creator>Ruthberg, Stanley</creator><creatorcontrib>Ruthberg, Stanley</creatorcontrib><description>The impedance of a microwave cavity whose characteristics are time‐dependent, as caused for example by a contained gaseous discharge afterglow, can be examined by means of a frequency‐modulated search signal and a swept receiver. The intersection of the search‐signal frequency and the acceptance frequency of the receiver results in a pulse whose shape is sensitive to cavity resonance. The time of occurrence of the pulse depends upon signal‐to‐receiver phase. This in combination with the measured receiver dispersion allows measurement of reflection coefficient and frequency shifts smaller than the readability of a precision wavemeter at 10 kMc. Problems of oscillator tuning are mitigated and special stabilization procedures are eliminated. Only standard components are used.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.1716079</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><ispartof>Review of scientific instruments, 1958-11, Vol.29 (11), p.999-1003</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-16a2cf0c03dd5b01ae61798bccbe7236166aea8fea9e6bef810d648e068c590c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.1716079$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,1558,27923,27924,76161</link.rule.ids></links><search><creatorcontrib>Ruthberg, Stanley</creatorcontrib><title>Microwave Double‐Sweep Method for Analysis of Time‐Dependent Cavity Characteristics</title><title>Review of scientific instruments</title><description>The impedance of a microwave cavity whose characteristics are time‐dependent, as caused for example by a contained gaseous discharge afterglow, can be examined by means of a frequency‐modulated search signal and a swept receiver. The intersection of the search‐signal frequency and the acceptance frequency of the receiver results in a pulse whose shape is sensitive to cavity resonance. The time of occurrence of the pulse depends upon signal‐to‐receiver phase. This in combination with the measured receiver dispersion allows measurement of reflection coefficient and frequency shifts smaller than the readability of a precision wavemeter at 10 kMc. Problems of oscillator tuning are mitigated and special stabilization procedures are eliminated. Only standard components are used.</description><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1958</creationdate><recordtype>article</recordtype><recordid>eNp90M1Kw0AUBeBBFKzVhW8wW4XUe5NmMlmW1D9ocWHFZZhM7tCRNgkzY0t3PoLP6JPY0qILwbu5m48D5zB2iTBAEMkNDjBDAVl-xHoIMo8yESfHrAeQDCORDeUpO_P-DbaXIvbY69Rq167Vivi4fa8W9PXx-bwm6viUwrytuWkdHzVqsfHW89bwmV3uzJg6ampqAi_UyoYNL-bKKR3IWR-s9ufsxKiFp4vD77OXu9tZ8RBNnu4fi9Ek0nGahwiFirUBDUldpxWgIoFZLiutK8riRKAQipQ0pHISFRmJUIuhJBBSpznopM-u9rnbFt47MmXn7FK5TYlQ7hYpsTwssrXXe-u1DSrYtvnBq9b9wrKrzX_4b_I3h2xyag</recordid><startdate>195811</startdate><enddate>195811</enddate><creator>Ruthberg, Stanley</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>195811</creationdate><title>Microwave Double‐Sweep Method for Analysis of Time‐Dependent Cavity Characteristics</title><author>Ruthberg, Stanley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-16a2cf0c03dd5b01ae61798bccbe7236166aea8fea9e6bef810d648e068c590c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1958</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruthberg, Stanley</creatorcontrib><collection>CrossRef</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruthberg, Stanley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave Double‐Sweep Method for Analysis of Time‐Dependent Cavity Characteristics</atitle><jtitle>Review of scientific instruments</jtitle><date>1958-11</date><risdate>1958</risdate><volume>29</volume><issue>11</issue><spage>999</spage><epage>1003</epage><pages>999-1003</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>The impedance of a microwave cavity whose characteristics are time‐dependent, as caused for example by a contained gaseous discharge afterglow, can be examined by means of a frequency‐modulated search signal and a swept receiver. The intersection of the search‐signal frequency and the acceptance frequency of the receiver results in a pulse whose shape is sensitive to cavity resonance. The time of occurrence of the pulse depends upon signal‐to‐receiver phase. This in combination with the measured receiver dispersion allows measurement of reflection coefficient and frequency shifts smaller than the readability of a precision wavemeter at 10 kMc. Problems of oscillator tuning are mitigated and special stabilization procedures are eliminated. Only standard components are used.</abstract><doi>10.1063/1.1716079</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 1958-11, Vol.29 (11), p.999-1003
issn 0034-6748
1089-7623
language eng
recordid cdi_crossref_primary_10_1063_1_1716079
source AIP Digital Archive
title Microwave Double‐Sweep Method for Analysis of Time‐Dependent Cavity Characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20Double%E2%80%90Sweep%20Method%20for%20Analysis%20of%20Time%E2%80%90Dependent%20Cavity%20Characteristics&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Ruthberg,%20Stanley&rft.date=1958-11&rft.volume=29&rft.issue=11&rft.spage=999&rft.epage=1003&rft.pages=999-1003&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.1716079&rft_dat=%3Cscitation_cross%3Ersi%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true