Microwave Double‐Sweep Method for Analysis of Time‐Dependent Cavity Characteristics
The impedance of a microwave cavity whose characteristics are time‐dependent, as caused for example by a contained gaseous discharge afterglow, can be examined by means of a frequency‐modulated search signal and a swept receiver. The intersection of the search‐signal frequency and the acceptance fre...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 1958-11, Vol.29 (11), p.999-1003 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1003 |
---|---|
container_issue | 11 |
container_start_page | 999 |
container_title | Review of scientific instruments |
container_volume | 29 |
creator | Ruthberg, Stanley |
description | The impedance of a microwave cavity whose characteristics are time‐dependent, as caused for example by a contained gaseous discharge afterglow, can be examined by means of a frequency‐modulated search signal and a swept receiver. The intersection of the search‐signal frequency and the acceptance frequency of the receiver results in a pulse whose shape is sensitive to cavity resonance. The time of occurrence of the pulse depends upon signal‐to‐receiver phase. This in combination with the measured receiver dispersion allows measurement of reflection coefficient and frequency shifts smaller than the readability of a precision wavemeter at 10 kMc. Problems of oscillator tuning are mitigated and special stabilization procedures are eliminated. Only standard components are used. |
doi_str_mv | 10.1063/1.1716079 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1716079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>rsi</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-16a2cf0c03dd5b01ae61798bccbe7236166aea8fea9e6bef810d648e068c590c3</originalsourceid><addsrcrecordid>eNp90M1Kw0AUBeBBFKzVhW8wW4XUe5NmMlmW1D9ocWHFZZhM7tCRNgkzY0t3PoLP6JPY0qILwbu5m48D5zB2iTBAEMkNDjBDAVl-xHoIMo8yESfHrAeQDCORDeUpO_P-DbaXIvbY69Rq167Vivi4fa8W9PXx-bwm6viUwrytuWkdHzVqsfHW89bwmV3uzJg6ampqAi_UyoYNL-bKKR3IWR-s9ufsxKiFp4vD77OXu9tZ8RBNnu4fi9Ek0nGahwiFirUBDUldpxWgIoFZLiutK8riRKAQipQ0pHISFRmJUIuhJBBSpznopM-u9rnbFt47MmXn7FK5TYlQ7hYpsTwssrXXe-u1DSrYtvnBq9b9wrKrzX_4b_I3h2xyag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microwave Double‐Sweep Method for Analysis of Time‐Dependent Cavity Characteristics</title><source>AIP Digital Archive</source><creator>Ruthberg, Stanley</creator><creatorcontrib>Ruthberg, Stanley</creatorcontrib><description>The impedance of a microwave cavity whose characteristics are time‐dependent, as caused for example by a contained gaseous discharge afterglow, can be examined by means of a frequency‐modulated search signal and a swept receiver. The intersection of the search‐signal frequency and the acceptance frequency of the receiver results in a pulse whose shape is sensitive to cavity resonance. The time of occurrence of the pulse depends upon signal‐to‐receiver phase. This in combination with the measured receiver dispersion allows measurement of reflection coefficient and frequency shifts smaller than the readability of a precision wavemeter at 10 kMc. Problems of oscillator tuning are mitigated and special stabilization procedures are eliminated. Only standard components are used.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.1716079</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><ispartof>Review of scientific instruments, 1958-11, Vol.29 (11), p.999-1003</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-16a2cf0c03dd5b01ae61798bccbe7236166aea8fea9e6bef810d648e068c590c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.1716079$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,1558,27923,27924,76161</link.rule.ids></links><search><creatorcontrib>Ruthberg, Stanley</creatorcontrib><title>Microwave Double‐Sweep Method for Analysis of Time‐Dependent Cavity Characteristics</title><title>Review of scientific instruments</title><description>The impedance of a microwave cavity whose characteristics are time‐dependent, as caused for example by a contained gaseous discharge afterglow, can be examined by means of a frequency‐modulated search signal and a swept receiver. The intersection of the search‐signal frequency and the acceptance frequency of the receiver results in a pulse whose shape is sensitive to cavity resonance. The time of occurrence of the pulse depends upon signal‐to‐receiver phase. This in combination with the measured receiver dispersion allows measurement of reflection coefficient and frequency shifts smaller than the readability of a precision wavemeter at 10 kMc. Problems of oscillator tuning are mitigated and special stabilization procedures are eliminated. Only standard components are used.</description><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1958</creationdate><recordtype>article</recordtype><recordid>eNp90M1Kw0AUBeBBFKzVhW8wW4XUe5NmMlmW1D9ocWHFZZhM7tCRNgkzY0t3PoLP6JPY0qILwbu5m48D5zB2iTBAEMkNDjBDAVl-xHoIMo8yESfHrAeQDCORDeUpO_P-DbaXIvbY69Rq167Vivi4fa8W9PXx-bwm6viUwrytuWkdHzVqsfHW89bwmV3uzJg6ampqAi_UyoYNL-bKKR3IWR-s9ufsxKiFp4vD77OXu9tZ8RBNnu4fi9Ek0nGahwiFirUBDUldpxWgIoFZLiutK8riRKAQipQ0pHISFRmJUIuhJBBSpznopM-u9rnbFt47MmXn7FK5TYlQ7hYpsTwssrXXe-u1DSrYtvnBq9b9wrKrzX_4b_I3h2xyag</recordid><startdate>195811</startdate><enddate>195811</enddate><creator>Ruthberg, Stanley</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>195811</creationdate><title>Microwave Double‐Sweep Method for Analysis of Time‐Dependent Cavity Characteristics</title><author>Ruthberg, Stanley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-16a2cf0c03dd5b01ae61798bccbe7236166aea8fea9e6bef810d648e068c590c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1958</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruthberg, Stanley</creatorcontrib><collection>CrossRef</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruthberg, Stanley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave Double‐Sweep Method for Analysis of Time‐Dependent Cavity Characteristics</atitle><jtitle>Review of scientific instruments</jtitle><date>1958-11</date><risdate>1958</risdate><volume>29</volume><issue>11</issue><spage>999</spage><epage>1003</epage><pages>999-1003</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>The impedance of a microwave cavity whose characteristics are time‐dependent, as caused for example by a contained gaseous discharge afterglow, can be examined by means of a frequency‐modulated search signal and a swept receiver. The intersection of the search‐signal frequency and the acceptance frequency of the receiver results in a pulse whose shape is sensitive to cavity resonance. The time of occurrence of the pulse depends upon signal‐to‐receiver phase. This in combination with the measured receiver dispersion allows measurement of reflection coefficient and frequency shifts smaller than the readability of a precision wavemeter at 10 kMc. Problems of oscillator tuning are mitigated and special stabilization procedures are eliminated. Only standard components are used.</abstract><doi>10.1063/1.1716079</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 1958-11, Vol.29 (11), p.999-1003 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1716079 |
source | AIP Digital Archive |
title | Microwave Double‐Sweep Method for Analysis of Time‐Dependent Cavity Characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20Double%E2%80%90Sweep%20Method%20for%20Analysis%20of%20Time%E2%80%90Dependent%20Cavity%20Characteristics&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Ruthberg,%20Stanley&rft.date=1958-11&rft.volume=29&rft.issue=11&rft.spage=999&rft.epage=1003&rft.pages=999-1003&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.1716079&rft_dat=%3Cscitation_cross%3Ersi%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |