Viscous Ultrasonic Attenuation in Metals

Using a pulse technique, the attenuation of longitudinal ultrasonic waves is measured in polycrystalline aluminum, cobalt, nickel, and copper, respectively, in the frequency range from 1 to 15 Mc/sec. The metals have previously received different treatments of loading and annealing. The measurement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1967-01, Vol.38 (8), p.3291-3293
Hauptverfasser: Gobran, N. K., Youssef, H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3293
container_issue 8
container_start_page 3291
container_title Journal of applied physics
container_volume 38
creator Gobran, N. K.
Youssef, H.
description Using a pulse technique, the attenuation of longitudinal ultrasonic waves is measured in polycrystalline aluminum, cobalt, nickel, and copper, respectively, in the frequency range from 1 to 15 Mc/sec. The metals have previously received different treatments of loading and annealing. The measurement is extended, for nickel, in the temperature range from −78° up to 450°C. The results indicate that the attenuation-frequency curve can be divided into two parts: In the low frequency part, the (attenuation)2 varies linearly with frequency; the high-frequency part exhibits a constant attenuation corresponding to a diffusion loss as previously reported. The loss associated with the parabolic part is attributed to a viscous origin as that considered in boundary layers. The interaction of a dislocation-free volume and the surrounding dislocations (as a fluid) could explain qualitatively and quantitatively the parabolic viscous behavior.
doi_str_mv 10.1063/1.1710101
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1710101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1710101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-74429ad4bc3d0f983fd3313b2ec5ac08e4cd729ffe0bacb90f5f570f9d4577813</originalsourceid><addsrcrecordid>eNotj0tLAzEURoMoOFYX_oNZ6iL13jxMsizFF7R0Y92GTB4QqTOSpAv_vSOWb3E2HwcOIbcIS4RH_oBLVAjzzkiHoA1VUsI56QAYUm2UuSRXtX4CIGpuOnL3kaufjrXfH1pxdRqz71etxfHoWp7GPo_9NjZ3qNfkIs2INycuyP756X39Sje7l7f1akM9Y6ZRJQQzLojB8wDJaJ4C58gHFr10HnQUPihmUoowOD8YSDJJNT-DkEpp5Aty_-_1Zaq1xGS_S_5y5cci2L9Ei_aUyH8BVB9CpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Viscous Ultrasonic Attenuation in Metals</title><source>AIP Digital Archive</source><creator>Gobran, N. K. ; Youssef, H.</creator><creatorcontrib>Gobran, N. K. ; Youssef, H.</creatorcontrib><description>Using a pulse technique, the attenuation of longitudinal ultrasonic waves is measured in polycrystalline aluminum, cobalt, nickel, and copper, respectively, in the frequency range from 1 to 15 Mc/sec. The metals have previously received different treatments of loading and annealing. The measurement is extended, for nickel, in the temperature range from −78° up to 450°C. The results indicate that the attenuation-frequency curve can be divided into two parts: In the low frequency part, the (attenuation)2 varies linearly with frequency; the high-frequency part exhibits a constant attenuation corresponding to a diffusion loss as previously reported. The loss associated with the parabolic part is attributed to a viscous origin as that considered in boundary layers. The interaction of a dislocation-free volume and the surrounding dislocations (as a fluid) could explain qualitatively and quantitatively the parabolic viscous behavior.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1710101</identifier><language>eng</language><ispartof>Journal of applied physics, 1967-01, Vol.38 (8), p.3291-3293</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c229t-74429ad4bc3d0f983fd3313b2ec5ac08e4cd729ffe0bacb90f5f570f9d4577813</citedby><cites>FETCH-LOGICAL-c229t-74429ad4bc3d0f983fd3313b2ec5ac08e4cd729ffe0bacb90f5f570f9d4577813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gobran, N. K.</creatorcontrib><creatorcontrib>Youssef, H.</creatorcontrib><title>Viscous Ultrasonic Attenuation in Metals</title><title>Journal of applied physics</title><description>Using a pulse technique, the attenuation of longitudinal ultrasonic waves is measured in polycrystalline aluminum, cobalt, nickel, and copper, respectively, in the frequency range from 1 to 15 Mc/sec. The metals have previously received different treatments of loading and annealing. The measurement is extended, for nickel, in the temperature range from −78° up to 450°C. The results indicate that the attenuation-frequency curve can be divided into two parts: In the low frequency part, the (attenuation)2 varies linearly with frequency; the high-frequency part exhibits a constant attenuation corresponding to a diffusion loss as previously reported. The loss associated with the parabolic part is attributed to a viscous origin as that considered in boundary layers. The interaction of a dislocation-free volume and the surrounding dislocations (as a fluid) could explain qualitatively and quantitatively the parabolic viscous behavior.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1967</creationdate><recordtype>article</recordtype><recordid>eNotj0tLAzEURoMoOFYX_oNZ6iL13jxMsizFF7R0Y92GTB4QqTOSpAv_vSOWb3E2HwcOIbcIS4RH_oBLVAjzzkiHoA1VUsI56QAYUm2UuSRXtX4CIGpuOnL3kaufjrXfH1pxdRqz71etxfHoWp7GPo_9NjZ3qNfkIs2INycuyP756X39Sje7l7f1akM9Y6ZRJQQzLojB8wDJaJ4C58gHFr10HnQUPihmUoowOD8YSDJJNT-DkEpp5Aty_-_1Zaq1xGS_S_5y5cci2L9Ei_aUyH8BVB9CpA</recordid><startdate>19670101</startdate><enddate>19670101</enddate><creator>Gobran, N. K.</creator><creator>Youssef, H.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19670101</creationdate><title>Viscous Ultrasonic Attenuation in Metals</title><author>Gobran, N. K. ; Youssef, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-74429ad4bc3d0f983fd3313b2ec5ac08e4cd729ffe0bacb90f5f570f9d4577813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1967</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gobran, N. K.</creatorcontrib><creatorcontrib>Youssef, H.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gobran, N. K.</au><au>Youssef, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscous Ultrasonic Attenuation in Metals</atitle><jtitle>Journal of applied physics</jtitle><date>1967-01-01</date><risdate>1967</risdate><volume>38</volume><issue>8</issue><spage>3291</spage><epage>3293</epage><pages>3291-3293</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Using a pulse technique, the attenuation of longitudinal ultrasonic waves is measured in polycrystalline aluminum, cobalt, nickel, and copper, respectively, in the frequency range from 1 to 15 Mc/sec. The metals have previously received different treatments of loading and annealing. The measurement is extended, for nickel, in the temperature range from −78° up to 450°C. The results indicate that the attenuation-frequency curve can be divided into two parts: In the low frequency part, the (attenuation)2 varies linearly with frequency; the high-frequency part exhibits a constant attenuation corresponding to a diffusion loss as previously reported. The loss associated with the parabolic part is attributed to a viscous origin as that considered in boundary layers. The interaction of a dislocation-free volume and the surrounding dislocations (as a fluid) could explain qualitatively and quantitatively the parabolic viscous behavior.</abstract><doi>10.1063/1.1710101</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1967-01, Vol.38 (8), p.3291-3293
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_1710101
source AIP Digital Archive
title Viscous Ultrasonic Attenuation in Metals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscous%20Ultrasonic%20Attenuation%20in%20Metals&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Gobran,%20N.%20K.&rft.date=1967-01-01&rft.volume=38&rft.issue=8&rft.spage=3291&rft.epage=3293&rft.pages=3291-3293&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1710101&rft_dat=%3Ccrossref%3E10_1063_1_1710101%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true