Momentum‐Transfer Theorem for Inelastic Processes
Recently it has been shown that for potential scattering, the well‐known optical theorem—relating the total cross section to the imaginary part of the forward scattering amplitude—can be generalized to yield a ``momentum‐transfer cross‐section theorem.'' The present paper further generaliz...
Gespeichert in:
Veröffentlicht in: | Journal of Mathematical Physics (New York) (U.S.) 1965-09, Vol.6 (9), p.1396-1402 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1402 |
---|---|
container_issue | 9 |
container_start_page | 1396 |
container_title | Journal of Mathematical Physics (New York) (U.S.) |
container_volume | 6 |
creator | Gerjuoy, E. |
description | Recently it has been shown that for potential scattering, the well‐known optical theorem—relating the total cross section to the imaginary part of the forward scattering amplitude—can be generalized to yield a ``momentum‐transfer cross‐section theorem.'' The present paper further generalizes the previous potential scattering result. Specifically, it appears that the momentum‐transfer cross‐section theorem is valid also for many‐particle systems, wherein inelastic processes occur. Although this last assertion probably holds quite generally, a proof is given only for the collisions of electrons with atomic hydrogen. The proof takes into account electron indistinguishability, as well as the possibility that the incident electron ionizes the atom, but assumes the forces are not spin‐dependent. |
doi_str_mv | 10.1063/1.1704790 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1704790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-c522e40f6b1af85132f330737f541a69abb8561a0112d9aafd730073075a90e53</originalsourceid><addsrcrecordid>eNp90M9KAzEQBvAgCtbqwTdYvClsncn_PUqxWqjooZ5DmiZ0pbspySp48xF8Rp_ELS16EDzNYX58M3yEnCOMECS7xhEq4KqCAzJA0FWppNCHZABAaUm51sfkJOcXAETN-YCwh9j4tnttvj4-58m2OfhUzFc-Jt8UIaZi2vq1zV3tiqcUnc_Z51NyFOw6-7P9HJLnye18fF_OHu-m45tZ6RiVXekEpZ5DkAu0QQtkNDAGiqkgOFpZ2cVCC4m2f4UuK2vDUjHo96CErcALNiQXu9zY3zfZ1Z13Kxfb1rvOcCE5FVWPLnfIpZhz8sFsUt3Y9G4QzLYSg2ZfSW-vdnabZbs6tj_4LaZfaDbL8B_-m_wNeMhucg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Momentum‐Transfer Theorem for Inelastic Processes</title><source>AIP Digital Archive</source><creator>Gerjuoy, E.</creator><creatorcontrib>Gerjuoy, E. ; Univ. of Pittsburgh</creatorcontrib><description>Recently it has been shown that for potential scattering, the well‐known optical theorem—relating the total cross section to the imaginary part of the forward scattering amplitude—can be generalized to yield a ``momentum‐transfer cross‐section theorem.'' The present paper further generalizes the previous potential scattering result. Specifically, it appears that the momentum‐transfer cross‐section theorem is valid also for many‐particle systems, wherein inelastic processes occur. Although this last assertion probably holds quite generally, a proof is given only for the collisions of electrons with atomic hydrogen. The proof takes into account electron indistinguishability, as well as the possibility that the incident electron ionizes the atom, but assumes the forces are not spin‐dependent.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1704790</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><subject>Atomic Physics ; COLLISIONS ; CROSS SECTIONS ; DIFFERENTIAL EQUATIONS ; ELECTRONS ; HYDROGEN ; INELASTIC SCATTERING ; MOMENTUM ; OPTICAL MODEL ; PHYSICS ; SCATTERING ; SCATTERING AMPLITUDE ; SPIN</subject><ispartof>Journal of Mathematical Physics (New York) (U.S.), 1965-09, Vol.6 (9), p.1396-1402</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-c522e40f6b1af85132f330737f541a69abb8561a0112d9aafd730073075a90e53</citedby><cites>FETCH-LOGICAL-c326t-c522e40f6b1af85132f330737f541a69abb8561a0112d9aafd730073075a90e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1704790$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,885,1559,27924,27925,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4564259$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerjuoy, E.</creatorcontrib><creatorcontrib>Univ. of Pittsburgh</creatorcontrib><title>Momentum‐Transfer Theorem for Inelastic Processes</title><title>Journal of Mathematical Physics (New York) (U.S.)</title><description>Recently it has been shown that for potential scattering, the well‐known optical theorem—relating the total cross section to the imaginary part of the forward scattering amplitude—can be generalized to yield a ``momentum‐transfer cross‐section theorem.'' The present paper further generalizes the previous potential scattering result. Specifically, it appears that the momentum‐transfer cross‐section theorem is valid also for many‐particle systems, wherein inelastic processes occur. Although this last assertion probably holds quite generally, a proof is given only for the collisions of electrons with atomic hydrogen. The proof takes into account electron indistinguishability, as well as the possibility that the incident electron ionizes the atom, but assumes the forces are not spin‐dependent.</description><subject>Atomic Physics</subject><subject>COLLISIONS</subject><subject>CROSS SECTIONS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELECTRONS</subject><subject>HYDROGEN</subject><subject>INELASTIC SCATTERING</subject><subject>MOMENTUM</subject><subject>OPTICAL MODEL</subject><subject>PHYSICS</subject><subject>SCATTERING</subject><subject>SCATTERING AMPLITUDE</subject><subject>SPIN</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1965</creationdate><recordtype>article</recordtype><recordid>eNp90M9KAzEQBvAgCtbqwTdYvClsncn_PUqxWqjooZ5DmiZ0pbspySp48xF8Rp_ELS16EDzNYX58M3yEnCOMECS7xhEq4KqCAzJA0FWppNCHZABAaUm51sfkJOcXAETN-YCwh9j4tnttvj4-58m2OfhUzFc-Jt8UIaZi2vq1zV3tiqcUnc_Z51NyFOw6-7P9HJLnye18fF_OHu-m45tZ6RiVXekEpZ5DkAu0QQtkNDAGiqkgOFpZ2cVCC4m2f4UuK2vDUjHo96CErcALNiQXu9zY3zfZ1Z13Kxfb1rvOcCE5FVWPLnfIpZhz8sFsUt3Y9G4QzLYSg2ZfSW-vdnabZbs6tj_4LaZfaDbL8B_-m_wNeMhucg</recordid><startdate>196509</startdate><enddate>196509</enddate><creator>Gerjuoy, E.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>196509</creationdate><title>Momentum‐Transfer Theorem for Inelastic Processes</title><author>Gerjuoy, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-c522e40f6b1af85132f330737f541a69abb8561a0112d9aafd730073075a90e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1965</creationdate><topic>Atomic Physics</topic><topic>COLLISIONS</topic><topic>CROSS SECTIONS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELECTRONS</topic><topic>HYDROGEN</topic><topic>INELASTIC SCATTERING</topic><topic>MOMENTUM</topic><topic>OPTICAL MODEL</topic><topic>PHYSICS</topic><topic>SCATTERING</topic><topic>SCATTERING AMPLITUDE</topic><topic>SPIN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerjuoy, E.</creatorcontrib><creatorcontrib>Univ. of Pittsburgh</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of Mathematical Physics (New York) (U.S.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerjuoy, E.</au><aucorp>Univ. of Pittsburgh</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Momentum‐Transfer Theorem for Inelastic Processes</atitle><jtitle>Journal of Mathematical Physics (New York) (U.S.)</jtitle><date>1965-09</date><risdate>1965</risdate><volume>6</volume><issue>9</issue><spage>1396</spage><epage>1402</epage><pages>1396-1402</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Recently it has been shown that for potential scattering, the well‐known optical theorem—relating the total cross section to the imaginary part of the forward scattering amplitude—can be generalized to yield a ``momentum‐transfer cross‐section theorem.'' The present paper further generalizes the previous potential scattering result. Specifically, it appears that the momentum‐transfer cross‐section theorem is valid also for many‐particle systems, wherein inelastic processes occur. Although this last assertion probably holds quite generally, a proof is given only for the collisions of electrons with atomic hydrogen. The proof takes into account electron indistinguishability, as well as the possibility that the incident electron ionizes the atom, but assumes the forces are not spin‐dependent.</abstract><doi>10.1063/1.1704790</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of Mathematical Physics (New York) (U.S.), 1965-09, Vol.6 (9), p.1396-1402 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1704790 |
source | AIP Digital Archive |
subjects | Atomic Physics COLLISIONS CROSS SECTIONS DIFFERENTIAL EQUATIONS ELECTRONS HYDROGEN INELASTIC SCATTERING MOMENTUM OPTICAL MODEL PHYSICS SCATTERING SCATTERING AMPLITUDE SPIN |
title | Momentum‐Transfer Theorem for Inelastic Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Momentum%E2%80%90Transfer%20Theorem%20for%20Inelastic%20Processes&rft.jtitle=Journal%20of%20Mathematical%20Physics%20(New%20York)%20(U.S.)&rft.au=Gerjuoy,%20E.&rft.aucorp=Univ.%20of%20Pittsburgh&rft.date=1965-09&rft.volume=6&rft.issue=9&rft.spage=1396&rft.epage=1402&rft.pages=1396-1402&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1704790&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |