Momentum‐Transfer Theorem for Inelastic Processes

Recently it has been shown that for potential scattering, the well‐known optical theorem—relating the total cross section to the imaginary part of the forward scattering amplitude—can be generalized to yield a ``momentum‐transfer cross‐section theorem.'' The present paper further generaliz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Mathematical Physics (New York) (U.S.) 1965-09, Vol.6 (9), p.1396-1402
1. Verfasser: Gerjuoy, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1402
container_issue 9
container_start_page 1396
container_title Journal of Mathematical Physics (New York) (U.S.)
container_volume 6
creator Gerjuoy, E.
description Recently it has been shown that for potential scattering, the well‐known optical theorem—relating the total cross section to the imaginary part of the forward scattering amplitude—can be generalized to yield a ``momentum‐transfer cross‐section theorem.'' The present paper further generalizes the previous potential scattering result. Specifically, it appears that the momentum‐transfer cross‐section theorem is valid also for many‐particle systems, wherein inelastic processes occur. Although this last assertion probably holds quite generally, a proof is given only for the collisions of electrons with atomic hydrogen. The proof takes into account electron indistinguishability, as well as the possibility that the incident electron ionizes the atom, but assumes the forces are not spin‐dependent.
doi_str_mv 10.1063/1.1704790
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1704790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-c522e40f6b1af85132f330737f541a69abb8561a0112d9aafd730073075a90e53</originalsourceid><addsrcrecordid>eNp90M9KAzEQBvAgCtbqwTdYvClsncn_PUqxWqjooZ5DmiZ0pbspySp48xF8Rp_ELS16EDzNYX58M3yEnCOMECS7xhEq4KqCAzJA0FWppNCHZABAaUm51sfkJOcXAETN-YCwh9j4tnttvj4-58m2OfhUzFc-Jt8UIaZi2vq1zV3tiqcUnc_Z51NyFOw6-7P9HJLnye18fF_OHu-m45tZ6RiVXekEpZ5DkAu0QQtkNDAGiqkgOFpZ2cVCC4m2f4UuK2vDUjHo96CErcALNiQXu9zY3zfZ1Z13Kxfb1rvOcCE5FVWPLnfIpZhz8sFsUt3Y9G4QzLYSg2ZfSW-vdnabZbs6tj_4LaZfaDbL8B_-m_wNeMhucg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Momentum‐Transfer Theorem for Inelastic Processes</title><source>AIP Digital Archive</source><creator>Gerjuoy, E.</creator><creatorcontrib>Gerjuoy, E. ; Univ. of Pittsburgh</creatorcontrib><description>Recently it has been shown that for potential scattering, the well‐known optical theorem—relating the total cross section to the imaginary part of the forward scattering amplitude—can be generalized to yield a ``momentum‐transfer cross‐section theorem.'' The present paper further generalizes the previous potential scattering result. Specifically, it appears that the momentum‐transfer cross‐section theorem is valid also for many‐particle systems, wherein inelastic processes occur. Although this last assertion probably holds quite generally, a proof is given only for the collisions of electrons with atomic hydrogen. The proof takes into account electron indistinguishability, as well as the possibility that the incident electron ionizes the atom, but assumes the forces are not spin‐dependent.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1704790</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><subject>Atomic Physics ; COLLISIONS ; CROSS SECTIONS ; DIFFERENTIAL EQUATIONS ; ELECTRONS ; HYDROGEN ; INELASTIC SCATTERING ; MOMENTUM ; OPTICAL MODEL ; PHYSICS ; SCATTERING ; SCATTERING AMPLITUDE ; SPIN</subject><ispartof>Journal of Mathematical Physics (New York) (U.S.), 1965-09, Vol.6 (9), p.1396-1402</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-c522e40f6b1af85132f330737f541a69abb8561a0112d9aafd730073075a90e53</citedby><cites>FETCH-LOGICAL-c326t-c522e40f6b1af85132f330737f541a69abb8561a0112d9aafd730073075a90e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1704790$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,885,1559,27924,27925,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4564259$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerjuoy, E.</creatorcontrib><creatorcontrib>Univ. of Pittsburgh</creatorcontrib><title>Momentum‐Transfer Theorem for Inelastic Processes</title><title>Journal of Mathematical Physics (New York) (U.S.)</title><description>Recently it has been shown that for potential scattering, the well‐known optical theorem—relating the total cross section to the imaginary part of the forward scattering amplitude—can be generalized to yield a ``momentum‐transfer cross‐section theorem.'' The present paper further generalizes the previous potential scattering result. Specifically, it appears that the momentum‐transfer cross‐section theorem is valid also for many‐particle systems, wherein inelastic processes occur. Although this last assertion probably holds quite generally, a proof is given only for the collisions of electrons with atomic hydrogen. The proof takes into account electron indistinguishability, as well as the possibility that the incident electron ionizes the atom, but assumes the forces are not spin‐dependent.</description><subject>Atomic Physics</subject><subject>COLLISIONS</subject><subject>CROSS SECTIONS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELECTRONS</subject><subject>HYDROGEN</subject><subject>INELASTIC SCATTERING</subject><subject>MOMENTUM</subject><subject>OPTICAL MODEL</subject><subject>PHYSICS</subject><subject>SCATTERING</subject><subject>SCATTERING AMPLITUDE</subject><subject>SPIN</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1965</creationdate><recordtype>article</recordtype><recordid>eNp90M9KAzEQBvAgCtbqwTdYvClsncn_PUqxWqjooZ5DmiZ0pbspySp48xF8Rp_ELS16EDzNYX58M3yEnCOMECS7xhEq4KqCAzJA0FWppNCHZABAaUm51sfkJOcXAETN-YCwh9j4tnttvj4-58m2OfhUzFc-Jt8UIaZi2vq1zV3tiqcUnc_Z51NyFOw6-7P9HJLnye18fF_OHu-m45tZ6RiVXekEpZ5DkAu0QQtkNDAGiqkgOFpZ2cVCC4m2f4UuK2vDUjHo96CErcALNiQXu9zY3zfZ1Z13Kxfb1rvOcCE5FVWPLnfIpZhz8sFsUt3Y9G4QzLYSg2ZfSW-vdnabZbs6tj_4LaZfaDbL8B_-m_wNeMhucg</recordid><startdate>196509</startdate><enddate>196509</enddate><creator>Gerjuoy, E.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>196509</creationdate><title>Momentum‐Transfer Theorem for Inelastic Processes</title><author>Gerjuoy, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-c522e40f6b1af85132f330737f541a69abb8561a0112d9aafd730073075a90e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1965</creationdate><topic>Atomic Physics</topic><topic>COLLISIONS</topic><topic>CROSS SECTIONS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELECTRONS</topic><topic>HYDROGEN</topic><topic>INELASTIC SCATTERING</topic><topic>MOMENTUM</topic><topic>OPTICAL MODEL</topic><topic>PHYSICS</topic><topic>SCATTERING</topic><topic>SCATTERING AMPLITUDE</topic><topic>SPIN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerjuoy, E.</creatorcontrib><creatorcontrib>Univ. of Pittsburgh</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of Mathematical Physics (New York) (U.S.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerjuoy, E.</au><aucorp>Univ. of Pittsburgh</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Momentum‐Transfer Theorem for Inelastic Processes</atitle><jtitle>Journal of Mathematical Physics (New York) (U.S.)</jtitle><date>1965-09</date><risdate>1965</risdate><volume>6</volume><issue>9</issue><spage>1396</spage><epage>1402</epage><pages>1396-1402</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Recently it has been shown that for potential scattering, the well‐known optical theorem—relating the total cross section to the imaginary part of the forward scattering amplitude—can be generalized to yield a ``momentum‐transfer cross‐section theorem.'' The present paper further generalizes the previous potential scattering result. Specifically, it appears that the momentum‐transfer cross‐section theorem is valid also for many‐particle systems, wherein inelastic processes occur. Although this last assertion probably holds quite generally, a proof is given only for the collisions of electrons with atomic hydrogen. The proof takes into account electron indistinguishability, as well as the possibility that the incident electron ionizes the atom, but assumes the forces are not spin‐dependent.</abstract><doi>10.1063/1.1704790</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of Mathematical Physics (New York) (U.S.), 1965-09, Vol.6 (9), p.1396-1402
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_1704790
source AIP Digital Archive
subjects Atomic Physics
COLLISIONS
CROSS SECTIONS
DIFFERENTIAL EQUATIONS
ELECTRONS
HYDROGEN
INELASTIC SCATTERING
MOMENTUM
OPTICAL MODEL
PHYSICS
SCATTERING
SCATTERING AMPLITUDE
SPIN
title Momentum‐Transfer Theorem for Inelastic Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Momentum%E2%80%90Transfer%20Theorem%20for%20Inelastic%20Processes&rft.jtitle=Journal%20of%20Mathematical%20Physics%20(New%20York)%20(U.S.)&rft.au=Gerjuoy,%20E.&rft.aucorp=Univ.%20of%20Pittsburgh&rft.date=1965-09&rft.volume=6&rft.issue=9&rft.spage=1396&rft.epage=1402&rft.pages=1396-1402&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1704790&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true