Computational study of patterns in simple nonequilibrium systems
We present computational studies of a two component reaction diffusion system of the Grey and Scott type. The calculation involves a discrete treatment of the diffusion equation and some details of that problem are explained. As the simulation calculation runs over a 200{times}200 square spatial fie...
Gespeichert in:
Veröffentlicht in: | Computers in Physics 1997, Vol.11 (1), p.96 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 96 |
container_title | Computers in Physics |
container_volume | 11 |
creator | Barach, John Paul |
description | We present computational studies of a two component reaction diffusion system of the Grey and Scott type. The calculation involves a discrete treatment of the diffusion equation and some details of that problem are explained. As the simulation calculation runs over a 200{times}200 square spatial field ridge like patterns develop if one diffusion coefficient is about twice the size of the other and if the rate parameters are in a narrow range. Pattern development is faster when the reaction rates are larger, within this range. It is shown that for an advancing wave, the lead component has a wider front than the other although in steady state the two components obey a ridge/valley or valley/ridge equilibrium. We investigate ways in which a more complex time dependence could be introduced to the system and display one example of such a possible expansion of the study. A correlation coefficient study shows a modest but distinct difference between our pattern development and a random field. {copyright} {ital 1997 American Institute of Physics.} |
doi_str_mv | 10.1063/1.168599 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_168599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_168599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-8593d071be728f9ec5396edbec3eff91ef033b2dcf055aea54f4b6c0f413218a3</originalsourceid><addsrcrecordid>eNotkM1KxDAURrNQcBwFHyHu3HRMmjaT7JTiHwy40XVI0xuMtEnNTRd9e0fG1bc5fBwOITec7TiT4p7vuFSt1mdkw5RuKq6kvCCXiN-MMVVLuSEPXZrmpdgSUrQjxbIMK02ezrYUyBFpiBTDNI9AY4rws4Qx9DksE8UVC0x4Rc69HRGu_3dLPp-fPrrX6vD-8tY9HipXq7ZURw0xsD3vYV8rr8G1QksYenACvNccPBOirwfnWdtasG3jm1465hsuaq6s2JLb02_CEgy6UMB9uRQjuGIaUTdKH5m7E-NyQszgzZzDZPNqODN_RQw3pyLiFyHcVjY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational study of patterns in simple nonequilibrium systems</title><source>Alma/SFX Local Collection</source><creator>Barach, John Paul</creator><creatorcontrib>Barach, John Paul</creatorcontrib><description>We present computational studies of a two component reaction diffusion system of the Grey and Scott type. The calculation involves a discrete treatment of the diffusion equation and some details of that problem are explained. As the simulation calculation runs over a 200{times}200 square spatial field ridge like patterns develop if one diffusion coefficient is about twice the size of the other and if the rate parameters are in a narrow range. Pattern development is faster when the reaction rates are larger, within this range. It is shown that for an advancing wave, the lead component has a wider front than the other although in steady state the two components obey a ridge/valley or valley/ridge equilibrium. We investigate ways in which a more complex time dependence could be introduced to the system and display one example of such a possible expansion of the study. A correlation coefficient study shows a modest but distinct difference between our pattern development and a random field. {copyright} {ital 1997 American Institute of Physics.}</description><identifier>ISSN: 0894-1866</identifier><identifier>DOI: 10.1063/1.168599</identifier><language>eng</language><publisher>United States</publisher><subject>40 CHEMISTRY ; CHEMICAL REACTION KINETICS ; COMPUTERIZED SIMULATION ; CONCENTRATION RATIO ; CORRELATION FUNCTIONS ; DIFFUSION ; FINITE DIFFERENCE METHOD ; LAPLACIAN</subject><ispartof>Computers in Physics, 1997, Vol.11 (1), p.96</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-8593d071be728f9ec5396edbec3eff91ef033b2dcf055aea54f4b6c0f413218a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,4021,27921,27922,27923</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/432489$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barach, John Paul</creatorcontrib><title>Computational study of patterns in simple nonequilibrium systems</title><title>Computers in Physics</title><description>We present computational studies of a two component reaction diffusion system of the Grey and Scott type. The calculation involves a discrete treatment of the diffusion equation and some details of that problem are explained. As the simulation calculation runs over a 200{times}200 square spatial field ridge like patterns develop if one diffusion coefficient is about twice the size of the other and if the rate parameters are in a narrow range. Pattern development is faster when the reaction rates are larger, within this range. It is shown that for an advancing wave, the lead component has a wider front than the other although in steady state the two components obey a ridge/valley or valley/ridge equilibrium. We investigate ways in which a more complex time dependence could be introduced to the system and display one example of such a possible expansion of the study. A correlation coefficient study shows a modest but distinct difference between our pattern development and a random field. {copyright} {ital 1997 American Institute of Physics.}</description><subject>40 CHEMISTRY</subject><subject>CHEMICAL REACTION KINETICS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>CONCENTRATION RATIO</subject><subject>CORRELATION FUNCTIONS</subject><subject>DIFFUSION</subject><subject>FINITE DIFFERENCE METHOD</subject><subject>LAPLACIAN</subject><issn>0894-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNotkM1KxDAURrNQcBwFHyHu3HRMmjaT7JTiHwy40XVI0xuMtEnNTRd9e0fG1bc5fBwOITec7TiT4p7vuFSt1mdkw5RuKq6kvCCXiN-MMVVLuSEPXZrmpdgSUrQjxbIMK02ezrYUyBFpiBTDNI9AY4rws4Qx9DksE8UVC0x4Rc69HRGu_3dLPp-fPrrX6vD-8tY9HipXq7ZURw0xsD3vYV8rr8G1QksYenACvNccPBOirwfnWdtasG3jm1465hsuaq6s2JLb02_CEgy6UMB9uRQjuGIaUTdKH5m7E-NyQszgzZzDZPNqODN_RQw3pyLiFyHcVjY</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Barach, John Paul</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>1997</creationdate><title>Computational study of patterns in simple nonequilibrium systems</title><author>Barach, John Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-8593d071be728f9ec5396edbec3eff91ef033b2dcf055aea54f4b6c0f413218a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>40 CHEMISTRY</topic><topic>CHEMICAL REACTION KINETICS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>CONCENTRATION RATIO</topic><topic>CORRELATION FUNCTIONS</topic><topic>DIFFUSION</topic><topic>FINITE DIFFERENCE METHOD</topic><topic>LAPLACIAN</topic><toplevel>online_resources</toplevel><creatorcontrib>Barach, John Paul</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Computers in Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barach, John Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational study of patterns in simple nonequilibrium systems</atitle><jtitle>Computers in Physics</jtitle><date>1997</date><risdate>1997</risdate><volume>11</volume><issue>1</issue><spage>96</spage><pages>96-</pages><issn>0894-1866</issn><abstract>We present computational studies of a two component reaction diffusion system of the Grey and Scott type. The calculation involves a discrete treatment of the diffusion equation and some details of that problem are explained. As the simulation calculation runs over a 200{times}200 square spatial field ridge like patterns develop if one diffusion coefficient is about twice the size of the other and if the rate parameters are in a narrow range. Pattern development is faster when the reaction rates are larger, within this range. It is shown that for an advancing wave, the lead component has a wider front than the other although in steady state the two components obey a ridge/valley or valley/ridge equilibrium. We investigate ways in which a more complex time dependence could be introduced to the system and display one example of such a possible expansion of the study. A correlation coefficient study shows a modest but distinct difference between our pattern development and a random field. {copyright} {ital 1997 American Institute of Physics.}</abstract><cop>United States</cop><doi>10.1063/1.168599</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1866 |
ispartof | Computers in Physics, 1997, Vol.11 (1), p.96 |
issn | 0894-1866 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_168599 |
source | Alma/SFX Local Collection |
subjects | 40 CHEMISTRY CHEMICAL REACTION KINETICS COMPUTERIZED SIMULATION CONCENTRATION RATIO CORRELATION FUNCTIONS DIFFUSION FINITE DIFFERENCE METHOD LAPLACIAN |
title | Computational study of patterns in simple nonequilibrium systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20study%20of%20patterns%20in%20simple%20nonequilibrium%20systems&rft.jtitle=Computers%20in%20Physics&rft.au=Barach,%20John%20Paul&rft.date=1997&rft.volume=11&rft.issue=1&rft.spage=96&rft.pages=96-&rft.issn=0894-1866&rft_id=info:doi/10.1063/1.168599&rft_dat=%3Ccrossref_osti_%3E10_1063_1_168599%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |