Computational study of patterns in simple nonequilibrium systems

We present computational studies of a two component reaction diffusion system of the Grey and Scott type. The calculation involves a discrete treatment of the diffusion equation and some details of that problem are explained. As the simulation calculation runs over a 200{times}200 square spatial fie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in Physics 1997, Vol.11 (1), p.96
1. Verfasser: Barach, John Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 96
container_title Computers in Physics
container_volume 11
creator Barach, John Paul
description We present computational studies of a two component reaction diffusion system of the Grey and Scott type. The calculation involves a discrete treatment of the diffusion equation and some details of that problem are explained. As the simulation calculation runs over a 200{times}200 square spatial field ridge like patterns develop if one diffusion coefficient is about twice the size of the other and if the rate parameters are in a narrow range. Pattern development is faster when the reaction rates are larger, within this range. It is shown that for an advancing wave, the lead component has a wider front than the other although in steady state the two components obey a ridge/valley or valley/ridge equilibrium. We investigate ways in which a more complex time dependence could be introduced to the system and display one example of such a possible expansion of the study. A correlation coefficient study shows a modest but distinct difference between our pattern development and a random field. {copyright} {ital 1997 American Institute of Physics.}
doi_str_mv 10.1063/1.168599
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_168599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_168599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-8593d071be728f9ec5396edbec3eff91ef033b2dcf055aea54f4b6c0f413218a3</originalsourceid><addsrcrecordid>eNotkM1KxDAURrNQcBwFHyHu3HRMmjaT7JTiHwy40XVI0xuMtEnNTRd9e0fG1bc5fBwOITec7TiT4p7vuFSt1mdkw5RuKq6kvCCXiN-MMVVLuSEPXZrmpdgSUrQjxbIMK02ezrYUyBFpiBTDNI9AY4rws4Qx9DksE8UVC0x4Rc69HRGu_3dLPp-fPrrX6vD-8tY9HipXq7ZURw0xsD3vYV8rr8G1QksYenACvNccPBOirwfnWdtasG3jm1465hsuaq6s2JLb02_CEgy6UMB9uRQjuGIaUTdKH5m7E-NyQszgzZzDZPNqODN_RQw3pyLiFyHcVjY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational study of patterns in simple nonequilibrium systems</title><source>Alma/SFX Local Collection</source><creator>Barach, John Paul</creator><creatorcontrib>Barach, John Paul</creatorcontrib><description>We present computational studies of a two component reaction diffusion system of the Grey and Scott type. The calculation involves a discrete treatment of the diffusion equation and some details of that problem are explained. As the simulation calculation runs over a 200{times}200 square spatial field ridge like patterns develop if one diffusion coefficient is about twice the size of the other and if the rate parameters are in a narrow range. Pattern development is faster when the reaction rates are larger, within this range. It is shown that for an advancing wave, the lead component has a wider front than the other although in steady state the two components obey a ridge/valley or valley/ridge equilibrium. We investigate ways in which a more complex time dependence could be introduced to the system and display one example of such a possible expansion of the study. A correlation coefficient study shows a modest but distinct difference between our pattern development and a random field. {copyright} {ital 1997 American Institute of Physics.}</description><identifier>ISSN: 0894-1866</identifier><identifier>DOI: 10.1063/1.168599</identifier><language>eng</language><publisher>United States</publisher><subject>40 CHEMISTRY ; CHEMICAL REACTION KINETICS ; COMPUTERIZED SIMULATION ; CONCENTRATION RATIO ; CORRELATION FUNCTIONS ; DIFFUSION ; FINITE DIFFERENCE METHOD ; LAPLACIAN</subject><ispartof>Computers in Physics, 1997, Vol.11 (1), p.96</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-8593d071be728f9ec5396edbec3eff91ef033b2dcf055aea54f4b6c0f413218a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,4021,27921,27922,27923</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/432489$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barach, John Paul</creatorcontrib><title>Computational study of patterns in simple nonequilibrium systems</title><title>Computers in Physics</title><description>We present computational studies of a two component reaction diffusion system of the Grey and Scott type. The calculation involves a discrete treatment of the diffusion equation and some details of that problem are explained. As the simulation calculation runs over a 200{times}200 square spatial field ridge like patterns develop if one diffusion coefficient is about twice the size of the other and if the rate parameters are in a narrow range. Pattern development is faster when the reaction rates are larger, within this range. It is shown that for an advancing wave, the lead component has a wider front than the other although in steady state the two components obey a ridge/valley or valley/ridge equilibrium. We investigate ways in which a more complex time dependence could be introduced to the system and display one example of such a possible expansion of the study. A correlation coefficient study shows a modest but distinct difference between our pattern development and a random field. {copyright} {ital 1997 American Institute of Physics.}</description><subject>40 CHEMISTRY</subject><subject>CHEMICAL REACTION KINETICS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>CONCENTRATION RATIO</subject><subject>CORRELATION FUNCTIONS</subject><subject>DIFFUSION</subject><subject>FINITE DIFFERENCE METHOD</subject><subject>LAPLACIAN</subject><issn>0894-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNotkM1KxDAURrNQcBwFHyHu3HRMmjaT7JTiHwy40XVI0xuMtEnNTRd9e0fG1bc5fBwOITec7TiT4p7vuFSt1mdkw5RuKq6kvCCXiN-MMVVLuSEPXZrmpdgSUrQjxbIMK02ezrYUyBFpiBTDNI9AY4rws4Qx9DksE8UVC0x4Rc69HRGu_3dLPp-fPrrX6vD-8tY9HipXq7ZURw0xsD3vYV8rr8G1QksYenACvNccPBOirwfnWdtasG3jm1465hsuaq6s2JLb02_CEgy6UMB9uRQjuGIaUTdKH5m7E-NyQszgzZzDZPNqODN_RQw3pyLiFyHcVjY</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Barach, John Paul</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>1997</creationdate><title>Computational study of patterns in simple nonequilibrium systems</title><author>Barach, John Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-8593d071be728f9ec5396edbec3eff91ef033b2dcf055aea54f4b6c0f413218a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>40 CHEMISTRY</topic><topic>CHEMICAL REACTION KINETICS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>CONCENTRATION RATIO</topic><topic>CORRELATION FUNCTIONS</topic><topic>DIFFUSION</topic><topic>FINITE DIFFERENCE METHOD</topic><topic>LAPLACIAN</topic><toplevel>online_resources</toplevel><creatorcontrib>Barach, John Paul</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Computers in Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barach, John Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational study of patterns in simple nonequilibrium systems</atitle><jtitle>Computers in Physics</jtitle><date>1997</date><risdate>1997</risdate><volume>11</volume><issue>1</issue><spage>96</spage><pages>96-</pages><issn>0894-1866</issn><abstract>We present computational studies of a two component reaction diffusion system of the Grey and Scott type. The calculation involves a discrete treatment of the diffusion equation and some details of that problem are explained. As the simulation calculation runs over a 200{times}200 square spatial field ridge like patterns develop if one diffusion coefficient is about twice the size of the other and if the rate parameters are in a narrow range. Pattern development is faster when the reaction rates are larger, within this range. It is shown that for an advancing wave, the lead component has a wider front than the other although in steady state the two components obey a ridge/valley or valley/ridge equilibrium. We investigate ways in which a more complex time dependence could be introduced to the system and display one example of such a possible expansion of the study. A correlation coefficient study shows a modest but distinct difference between our pattern development and a random field. {copyright} {ital 1997 American Institute of Physics.}</abstract><cop>United States</cop><doi>10.1063/1.168599</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-1866
ispartof Computers in Physics, 1997, Vol.11 (1), p.96
issn 0894-1866
language eng
recordid cdi_crossref_primary_10_1063_1_168599
source Alma/SFX Local Collection
subjects 40 CHEMISTRY
CHEMICAL REACTION KINETICS
COMPUTERIZED SIMULATION
CONCENTRATION RATIO
CORRELATION FUNCTIONS
DIFFUSION
FINITE DIFFERENCE METHOD
LAPLACIAN
title Computational study of patterns in simple nonequilibrium systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20study%20of%20patterns%20in%20simple%20nonequilibrium%20systems&rft.jtitle=Computers%20in%20Physics&rft.au=Barach,%20John%20Paul&rft.date=1997&rft.volume=11&rft.issue=1&rft.spage=96&rft.pages=96-&rft.issn=0894-1866&rft_id=info:doi/10.1063/1.168599&rft_dat=%3Ccrossref_osti_%3E10_1063_1_168599%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true