Analytic Renormalization of the Exponential Interaction: The Three‐Point Time‐Ordered Product with Minimum Light Cone Singularity
A method of analytic renormalization is developed to define the three‐point time‐ordered product of massless fields of exponential type as a strictly localizable distribution. The uniqueness property, known for the two‐point T‐product, is verified for the three‐point product, for a special choice of...
Gespeichert in:
Veröffentlicht in: | J. Math. Phys. (N. Y.) 13: No. 7, 1026-41(Jul 1972) 1026-41(Jul 1972), 1972-07, Vol.13 (7), p.1026-1041 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1041 |
---|---|
container_issue | 7 |
container_start_page | 1026 |
container_title | J. Math. Phys. (N. Y.) 13: No. 7, 1026-41(Jul 1972) |
container_volume | 13 |
creator | Daniel, M. Mitter, P. K. |
description | A method of analytic renormalization is developed to define the three‐point time‐ordered product of massless fields of exponential type as a strictly localizable distribution. The uniqueness property, known for the two‐point T‐product, is verified for the three‐point product, for a special choice of fine renormalization. It is characterized by minimum singularity on the light cone: There are no delta function type singularities concentrated on the surface x
1 = x
2 = x
3. |
doi_str_mv | 10.1063/1.1666082 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1666082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-66333bf7e070413ee6240c725a41809d45979129d539ca5de408dbf6cd1083e23</originalsourceid><addsrcrecordid>eNqdkM1O4zAURi0EEuVnMW9gsQMpHf_FcdihqgNIRUVDZx0Z-4YYJXbluEBnxYY9z8iTTEqR2M_q6uo7OouD0A9KxpRI_pOOqZSSKLaDRpSoMitkrnbRiBDGMiaU2kcHff9ICKVKiBF6u_C6XSdn8G_wIXa6dX91csHjUOPUAJ6-LIMHn5xu8bVPELXZzOd4MYyLJgJ8vL7fBucTXrhu88yjhQgW38ZgVybhZ5cafOO861YdnrmHJuHJoMR3zj-sWh1dWh-hvVq3PRx_3UP059d0MbnKZvPL68nFLDNM0JRJyTm_rwsgBRGUA0gmiClYrgVVpLQiL4uSstLmvDQ6tyCIsve1NHZIwYHxQ3Sy9YY-uao3LoFpTPAeTKqEVJQVZIBOt5CJoe8j1NUyuk7HdUVJtYlc0eor8sCebdmN67Pb_8FPIX6D1dLW_B905I2t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytic Renormalization of the Exponential Interaction: The Three‐Point Time‐Ordered Product with Minimum Light Cone Singularity</title><source>AIP Digital Archive</source><creator>Daniel, M. ; Mitter, P. K.</creator><creatorcontrib>Daniel, M. ; Mitter, P. K. ; Oxford Univ</creatorcontrib><description>A method of analytic renormalization is developed to define the three‐point time‐ordered product of massless fields of exponential type as a strictly localizable distribution. The uniqueness property, known for the two‐point T‐product, is verified for the three‐point product, for a special choice of fine renormalization. It is characterized by minimum singularity on the light cone: There are no delta function type singularities concentrated on the surface x
1 = x
2 = x
3.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1666082</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><subject>ANALYTIC FUNCTIONS ; LAGRANGIAN FUNCTION ; LIGHT CONE ; N64420 -Physics (Theoretical)-Quantum Field Theories ; QUANTUM FIELD THEORY ; QUANTUM FIELD THEORY/renormalization of exponential interaction Lagrangians in, analytic ; RENORMALIZATION</subject><ispartof>J. Math. Phys. (N. Y.) 13: No. 7, 1026-41(Jul 1972), 1972-07, Vol.13 (7), p.1026-1041</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c241t-66333bf7e070413ee6240c725a41809d45979129d539ca5de408dbf6cd1083e23</citedby><cites>FETCH-LOGICAL-c241t-66333bf7e070413ee6240c725a41809d45979129d539ca5de408dbf6cd1083e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1666082$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,881,1553,27903,27904,76136</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4681270$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Daniel, M.</creatorcontrib><creatorcontrib>Mitter, P. K.</creatorcontrib><creatorcontrib>Oxford Univ</creatorcontrib><title>Analytic Renormalization of the Exponential Interaction: The Three‐Point Time‐Ordered Product with Minimum Light Cone Singularity</title><title>J. Math. Phys. (N. Y.) 13: No. 7, 1026-41(Jul 1972)</title><description>A method of analytic renormalization is developed to define the three‐point time‐ordered product of massless fields of exponential type as a strictly localizable distribution. The uniqueness property, known for the two‐point T‐product, is verified for the three‐point product, for a special choice of fine renormalization. It is characterized by minimum singularity on the light cone: There are no delta function type singularities concentrated on the surface x
1 = x
2 = x
3.</description><subject>ANALYTIC FUNCTIONS</subject><subject>LAGRANGIAN FUNCTION</subject><subject>LIGHT CONE</subject><subject>N64420 -Physics (Theoretical)-Quantum Field Theories</subject><subject>QUANTUM FIELD THEORY</subject><subject>QUANTUM FIELD THEORY/renormalization of exponential interaction Lagrangians in, analytic</subject><subject>RENORMALIZATION</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1972</creationdate><recordtype>article</recordtype><recordid>eNqdkM1O4zAURi0EEuVnMW9gsQMpHf_FcdihqgNIRUVDZx0Z-4YYJXbluEBnxYY9z8iTTEqR2M_q6uo7OouD0A9KxpRI_pOOqZSSKLaDRpSoMitkrnbRiBDGMiaU2kcHff9ICKVKiBF6u_C6XSdn8G_wIXa6dX91csHjUOPUAJ6-LIMHn5xu8bVPELXZzOd4MYyLJgJ8vL7fBucTXrhu88yjhQgW38ZgVybhZ5cafOO861YdnrmHJuHJoMR3zj-sWh1dWh-hvVq3PRx_3UP059d0MbnKZvPL68nFLDNM0JRJyTm_rwsgBRGUA0gmiClYrgVVpLQiL4uSstLmvDQ6tyCIsve1NHZIwYHxQ3Sy9YY-uao3LoFpTPAeTKqEVJQVZIBOt5CJoe8j1NUyuk7HdUVJtYlc0eor8sCebdmN67Pb_8FPIX6D1dLW_B905I2t</recordid><startdate>197207</startdate><enddate>197207</enddate><creator>Daniel, M.</creator><creator>Mitter, P. K.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>197207</creationdate><title>Analytic Renormalization of the Exponential Interaction: The Three‐Point Time‐Ordered Product with Minimum Light Cone Singularity</title><author>Daniel, M. ; Mitter, P. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-66333bf7e070413ee6240c725a41809d45979129d539ca5de408dbf6cd1083e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1972</creationdate><topic>ANALYTIC FUNCTIONS</topic><topic>LAGRANGIAN FUNCTION</topic><topic>LIGHT CONE</topic><topic>N64420 -Physics (Theoretical)-Quantum Field Theories</topic><topic>QUANTUM FIELD THEORY</topic><topic>QUANTUM FIELD THEORY/renormalization of exponential interaction Lagrangians in, analytic</topic><topic>RENORMALIZATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daniel, M.</creatorcontrib><creatorcontrib>Mitter, P. K.</creatorcontrib><creatorcontrib>Oxford Univ</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Math. Phys. (N. Y.) 13: No. 7, 1026-41(Jul 1972)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daniel, M.</au><au>Mitter, P. K.</au><aucorp>Oxford Univ</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic Renormalization of the Exponential Interaction: The Three‐Point Time‐Ordered Product with Minimum Light Cone Singularity</atitle><jtitle>J. Math. Phys. (N. Y.) 13: No. 7, 1026-41(Jul 1972)</jtitle><date>1972-07</date><risdate>1972</risdate><volume>13</volume><issue>7</issue><spage>1026</spage><epage>1041</epage><pages>1026-1041</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A method of analytic renormalization is developed to define the three‐point time‐ordered product of massless fields of exponential type as a strictly localizable distribution. The uniqueness property, known for the two‐point T‐product, is verified for the three‐point product, for a special choice of fine renormalization. It is characterized by minimum singularity on the light cone: There are no delta function type singularities concentrated on the surface x
1 = x
2 = x
3.</abstract><doi>10.1063/1.1666082</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | J. Math. Phys. (N. Y.) 13: No. 7, 1026-41(Jul 1972), 1972-07, Vol.13 (7), p.1026-1041 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1666082 |
source | AIP Digital Archive |
subjects | ANALYTIC FUNCTIONS LAGRANGIAN FUNCTION LIGHT CONE N64420 -Physics (Theoretical)-Quantum Field Theories QUANTUM FIELD THEORY QUANTUM FIELD THEORY/renormalization of exponential interaction Lagrangians in, analytic RENORMALIZATION |
title | Analytic Renormalization of the Exponential Interaction: The Three‐Point Time‐Ordered Product with Minimum Light Cone Singularity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20Renormalization%20of%20the%20Exponential%20Interaction:%20The%20Three%E2%80%90Point%20Time%E2%80%90Ordered%20Product%20with%20Minimum%20Light%20Cone%20Singularity&rft.jtitle=J.%20Math.%20Phys.%20(N.%20Y.)%2013:%20No.%207,%201026-41(Jul%201972)&rft.au=Daniel,%20M.&rft.aucorp=Oxford%20Univ&rft.date=1972-07&rft.volume=13&rft.issue=7&rft.spage=1026&rft.epage=1041&rft.pages=1026-1041&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1666082&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |