Numerical modeling of self-propagating polymerization fronts: The role of kinetics on front stability

Frontal propagation of a highly exothermic polymerization reaction in a liquid is studied with the goal of developing a mathematical model of the process. As a model case we consider monomers such as methacrylic acid and n -butyl acrylate with peroxide initiators, although the model is not limited t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 1997-06, Vol.7 (2), p.331-340
Hauptverfasser: Solovyov, Stanislav E., Ilyashenko, Victor M., Pojman, John A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Frontal propagation of a highly exothermic polymerization reaction in a liquid is studied with the goal of developing a mathematical model of the process. As a model case we consider monomers such as methacrylic acid and n -butyl acrylate with peroxide initiators, although the model is not limited to these reactants and can be applied to any system with the similar basic polymerization mechanism. A three-step reaction mechanism, including initiation, propagation and termination steps, as well as a more simple one-step mechanism, were considered. For the one-step mechanism the loss of stability of propagating front was observed as a sequence of period doubling bifurcations of the front velocity. It was shown that the one-step model cannot account for less than 100% conversion and product inhomogeneities as a result of front instability, therefore the three-step mechanism was exploited. The phenomenon of superadiabatic combustion temperature was observed beyond the Hopf bifurcation point for both kinetic schemes and supported by the experimental measurements. One- and two-dimensional numerical simulations were performed to observe various planar and nonplanar periodic modes, and the results for different kinetic schemes were compared. It was found that stability of the frontal mode for a one-step reaction mechanism does not differ for 1-D and 2-D cases. For the three-step reaction mechanism 2-D solutions turned out to be more stable with respect to the appearance of nonplanar periodic modes than corresponding 1-D solutions. Higher Zeldovich numbers (i.e., higher effective activation energies or lower initial temperatures) are necessary for the existence of planar and nonplanar periodic modes in the 2-D reactor with walls than in the 1-D case.
ISSN:1054-1500
1089-7682
DOI:10.1063/1.166248