Piecewise linear models for the quasiperiodic transition to chaos

We formulate and study analytically and computationally two families of piecewise linear degree one circle maps. These families offer the rare advantage of being non‐trivial but essentially solvable models for the phenomenon of mode locking and the quasiperiodic transition to chaos. For instance, fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 1996-06, Vol.6 (2), p.121-154
Hauptverfasser: Campbell, David K., Galeeva, Roza, Tresser, Charles, Uherka, David J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 2
container_start_page 121
container_title Chaos (Woodbury, N.Y.)
container_volume 6
creator Campbell, David K.
Galeeva, Roza
Tresser, Charles
Uherka, David J.
description We formulate and study analytically and computationally two families of piecewise linear degree one circle maps. These families offer the rare advantage of being non‐trivial but essentially solvable models for the phenomenon of mode locking and the quasiperiodic transition to chaos. For instance, for these families, we obtain complete solutions to several questions still largely unanswered for families of smooth circle maps. Our main results describe (1) the sets of maps in these families having some prescribed rotation interval; (2) the boundaries between zero and positive topological entropy and between zero length and non‐zero length rotation interval; and (3) the structure and bifurcations of the attractors in one of these families. We discuss the interpretation of these maps as low‐order spline approximations to the classic ‘‘sine‐circle’’ map and examine more generally the implications of our results for the case of smooth circle maps. We also mention a possible connection to recent experiments on models of a driven Josephson junction.
doi_str_mv 10.1063/1.166159
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_166159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859406783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d3d6d25cbfe6d045935386c038904e06857a59295a6d8d47ba3f8e2d009e858a3</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgiptT8C-QHvXQ-dI0aXocw18w0IOeQ5a8skjbdEmr-N-7sbEdBE_vHT58H-9LyDWFKQXB7umUCkF5eULGFGSZFkJmp9ud5ynlACNyEeMnANCM8XMyolkhIcuzMZm9OTT47SImtWtRh6TxFuuYVD4k_QqT9aCj6zA4b51J-qDb6Hrn26T3iVlpHy_JWaXriFf7OSEfjw_v8-d08fr0Mp8tUpNz2qeWWWEzbpYVCgs5LxlnUhhgsoQcQUheaF5mJdfCSpsXS80qiZkFKFFyqdmE3O5yu-DXA8ZeNS4arGvdoh-iopKXOYhCsiM1wccYsFJdcI0OP4qC2hamqNoVtqE3-9Rh2aA9wn1DG3C3A9G4Xm8_P5gvHw5BqrPVf_bP4V-knX_y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859406783</pqid></control><display><type>article</type><title>Piecewise linear models for the quasiperiodic transition to chaos</title><source>AIP Digital Archive</source><creator>Campbell, David K. ; Galeeva, Roza ; Tresser, Charles ; Uherka, David J.</creator><creatorcontrib>Campbell, David K. ; Galeeva, Roza ; Tresser, Charles ; Uherka, David J.</creatorcontrib><description>We formulate and study analytically and computationally two families of piecewise linear degree one circle maps. These families offer the rare advantage of being non‐trivial but essentially solvable models for the phenomenon of mode locking and the quasiperiodic transition to chaos. For instance, for these families, we obtain complete solutions to several questions still largely unanswered for families of smooth circle maps. Our main results describe (1) the sets of maps in these families having some prescribed rotation interval; (2) the boundaries between zero and positive topological entropy and between zero length and non‐zero length rotation interval; and (3) the structure and bifurcations of the attractors in one of these families. We discuss the interpretation of these maps as low‐order spline approximations to the classic ‘‘sine‐circle’’ map and examine more generally the implications of our results for the case of smooth circle maps. We also mention a possible connection to recent experiments on models of a driven Josephson junction.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.166159</identifier><identifier>PMID: 12780242</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States</publisher><ispartof>Chaos (Woodbury, N.Y.), 1996-06, Vol.6 (2), p.121-154</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d3d6d25cbfe6d045935386c038904e06857a59295a6d8d47ba3f8e2d009e858a3</citedby><cites>FETCH-LOGICAL-c451t-d3d6d25cbfe6d045935386c038904e06857a59295a6d8d47ba3f8e2d009e858a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1556,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12780242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campbell, David K.</creatorcontrib><creatorcontrib>Galeeva, Roza</creatorcontrib><creatorcontrib>Tresser, Charles</creatorcontrib><creatorcontrib>Uherka, David J.</creatorcontrib><title>Piecewise linear models for the quasiperiodic transition to chaos</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We formulate and study analytically and computationally two families of piecewise linear degree one circle maps. These families offer the rare advantage of being non‐trivial but essentially solvable models for the phenomenon of mode locking and the quasiperiodic transition to chaos. For instance, for these families, we obtain complete solutions to several questions still largely unanswered for families of smooth circle maps. Our main results describe (1) the sets of maps in these families having some prescribed rotation interval; (2) the boundaries between zero and positive topological entropy and between zero length and non‐zero length rotation interval; and (3) the structure and bifurcations of the attractors in one of these families. We discuss the interpretation of these maps as low‐order spline approximations to the classic ‘‘sine‐circle’’ map and examine more generally the implications of our results for the case of smooth circle maps. We also mention a possible connection to recent experiments on models of a driven Josephson junction.</description><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgiptT8C-QHvXQ-dI0aXocw18w0IOeQ5a8skjbdEmr-N-7sbEdBE_vHT58H-9LyDWFKQXB7umUCkF5eULGFGSZFkJmp9ud5ynlACNyEeMnANCM8XMyolkhIcuzMZm9OTT47SImtWtRh6TxFuuYVD4k_QqT9aCj6zA4b51J-qDb6Hrn26T3iVlpHy_JWaXriFf7OSEfjw_v8-d08fr0Mp8tUpNz2qeWWWEzbpYVCgs5LxlnUhhgsoQcQUheaF5mJdfCSpsXS80qiZkFKFFyqdmE3O5yu-DXA8ZeNS4arGvdoh-iopKXOYhCsiM1wccYsFJdcI0OP4qC2hamqNoVtqE3-9Rh2aA9wn1DG3C3A9G4Xm8_P5gvHw5BqrPVf_bP4V-knX_y</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Campbell, David K.</creator><creator>Galeeva, Roza</creator><creator>Tresser, Charles</creator><creator>Uherka, David J.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19960601</creationdate><title>Piecewise linear models for the quasiperiodic transition to chaos</title><author>Campbell, David K. ; Galeeva, Roza ; Tresser, Charles ; Uherka, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d3d6d25cbfe6d045935386c038904e06857a59295a6d8d47ba3f8e2d009e858a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campbell, David K.</creatorcontrib><creatorcontrib>Galeeva, Roza</creatorcontrib><creatorcontrib>Tresser, Charles</creatorcontrib><creatorcontrib>Uherka, David J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell, David K.</au><au>Galeeva, Roza</au><au>Tresser, Charles</au><au>Uherka, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piecewise linear models for the quasiperiodic transition to chaos</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>1996-06-01</date><risdate>1996</risdate><volume>6</volume><issue>2</issue><spage>121</spage><epage>154</epage><pages>121-154</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We formulate and study analytically and computationally two families of piecewise linear degree one circle maps. These families offer the rare advantage of being non‐trivial but essentially solvable models for the phenomenon of mode locking and the quasiperiodic transition to chaos. For instance, for these families, we obtain complete solutions to several questions still largely unanswered for families of smooth circle maps. Our main results describe (1) the sets of maps in these families having some prescribed rotation interval; (2) the boundaries between zero and positive topological entropy and between zero length and non‐zero length rotation interval; and (3) the structure and bifurcations of the attractors in one of these families. We discuss the interpretation of these maps as low‐order spline approximations to the classic ‘‘sine‐circle’’ map and examine more generally the implications of our results for the case of smooth circle maps. We also mention a possible connection to recent experiments on models of a driven Josephson junction.</abstract><cop>United States</cop><pmid>12780242</pmid><doi>10.1063/1.166159</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 1996-06, Vol.6 (2), p.121-154
issn 1054-1500
1089-7682
language eng
recordid cdi_crossref_primary_10_1063_1_166159
source AIP Digital Archive
title Piecewise linear models for the quasiperiodic transition to chaos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piecewise%20linear%20models%20for%20the%20quasiperiodic%20transition%20to%20chaos&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Campbell,%20David%20K.&rft.date=1996-06-01&rft.volume=6&rft.issue=2&rft.spage=121&rft.epage=154&rft.pages=121-154&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.166159&rft_dat=%3Cproquest_cross%3E1859406783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859406783&rft_id=info:pmid/12780242&rfr_iscdi=true