Effects of Point Defects on Elastic Precursor Decay in LiF

Experimental data for shock propagation along a 〈100〉 direction in single-crystal LiF show that elastic precursor decay is critically dependent on the origin of the sample. The most obvious differences among samples used are in their concentrations of impurities. It is suggested that divalent cation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Appl. Phys. 43: No. 5, 2132-45(May 1972) 2132-45(May 1972), 1972-01, Vol.43 (5), p.2132-2145
Hauptverfasser: Asay, J. R., Fowles, G. R., Durall, G. E., Miles, M. H., Tinder, R. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2145
container_issue 5
container_start_page 2132
container_title J. Appl. Phys. 43: No. 5, 2132-45(May 1972)
container_volume 43
creator Asay, J. R.
Fowles, G. R.
Durall, G. E.
Miles, M. H.
Tinder, R. F.
description Experimental data for shock propagation along a 〈100〉 direction in single-crystal LiF show that elastic precursor decay is critically dependent on the origin of the sample. The most obvious differences among samples used are in their concentrations of impurities. It is suggested that divalent cation impurities are responsible for variations in precursor decay, and this is supported by results from a set of samples irradiated with γ rays to produce F centers. For the observed range of defect concentrations, quasistatic yield stresses varied monotonically with concentration from 0.02 kbar for pure crystals to 1.0 kbar for the hardest material studied. In the shock loading experiments both hard and soft crystals showed an initial rapid decay of the precursor to near-equilibrium values of about 2 kbar for the softest crystals and about 6 kbar for the hardest. For crystals of intermediate hardness the decay was much slower. From observed effects of annealing before shocking it is inferred that dislocation mechanisms in shock differ from those believed to operate at low strain rates. Impact stress for all experiments was about 28.6 kbar and sample thicknesses ranged from 0.27 to 15.44 mm.
doi_str_mv 10.1063/1.1661464
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1661464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1661464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-a47d33c8a35e9aaf3472215025807b08da56a449defb226ad9bd66afeaee90f83</originalsourceid><addsrcrecordid>eNotkE1LxDAYhIMoWFcP_oPgzUPXN59NvMnaVaHgHvQc3qYJVtZWknrYf2-X7Wlg5mEYhpBbBmsGWjywNdOaSS3PSMHA2LJSCs5JAcBZaWxlL8lVzt8AjBlhC_JYxxj8lOkY6W7sh4k-h8UYaL3HPPWe7lLwfymPaQ49Hmg_0KbfXpOLiPscbhZdkc9t_bF5LZv3l7fNU1N6ruRUoqw6IbxBoYJFjEJWnDMFXBmoWjAdKo1S2i7ElnONnW07rTEGDMFCNGJF7k694zzGZd9PwX_5cRjmmU5qBdqqGbo_QT6NOacQ3W_qfzAdHAN3fMYxtzwj_gGicFPC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of Point Defects on Elastic Precursor Decay in LiF</title><source>AIP Digital Archive</source><creator>Asay, J. R. ; Fowles, G. R. ; Durall, G. E. ; Miles, M. H. ; Tinder, R. F.</creator><creatorcontrib>Asay, J. R. ; Fowles, G. R. ; Durall, G. E. ; Miles, M. H. ; Tinder, R. F. ; Sandia Labs., Albuquerque, N. Mex</creatorcontrib><description>Experimental data for shock propagation along a 〈100〉 direction in single-crystal LiF show that elastic precursor decay is critically dependent on the origin of the sample. The most obvious differences among samples used are in their concentrations of impurities. It is suggested that divalent cation impurities are responsible for variations in precursor decay, and this is supported by results from a set of samples irradiated with γ rays to produce F centers. For the observed range of defect concentrations, quasistatic yield stresses varied monotonically with concentration from 0.02 kbar for pure crystals to 1.0 kbar for the hardest material studied. In the shock loading experiments both hard and soft crystals showed an initial rapid decay of the precursor to near-equilibrium values of about 2 kbar for the softest crystals and about 6 kbar for the hardest. For crystals of intermediate hardness the decay was much slower. From observed effects of annealing before shocking it is inferred that dislocation mechanisms in shock differ from those believed to operate at low strain rates. Impact stress for all experiments was about 28.6 kbar and sample thicknesses ranged from 0.27 to 15.44 mm.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1661464</identifier><language>eng</language><subject>CRYSTAL LATTICES ; DEFECTS ; GAMMA RADIATION ; LITHIUM FLUORIDES ; LITHIUM FLUORIDES/shock propagation in $gamma$-irradiated, effects of point defects on elastic precursor decay in, (E/T) ; MONOCRYSTALS ; N74200 -Physics (Solid State)-Physical Properties ; PHOTON BEAMS ; RADIATION EFFECTS ; RELAXATION ; SHOCK WAVES ; SHOCK WAVES/propagation in $gamma$-irradiated lithium fluorides, effects of point defects on elastic precursor decay in, (E/T) ; WAVE PROPAGATION</subject><ispartof>J. Appl. Phys. 43: No. 5, 2132-45(May 1972), 1972-01, Vol.43 (5), p.2132-2145</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c254t-a47d33c8a35e9aaf3472215025807b08da56a449defb226ad9bd66afeaee90f83</citedby><cites>FETCH-LOGICAL-c254t-a47d33c8a35e9aaf3472215025807b08da56a449defb226ad9bd66afeaee90f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4650695$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Asay, J. R.</creatorcontrib><creatorcontrib>Fowles, G. R.</creatorcontrib><creatorcontrib>Durall, G. E.</creatorcontrib><creatorcontrib>Miles, M. H.</creatorcontrib><creatorcontrib>Tinder, R. F.</creatorcontrib><creatorcontrib>Sandia Labs., Albuquerque, N. Mex</creatorcontrib><title>Effects of Point Defects on Elastic Precursor Decay in LiF</title><title>J. Appl. Phys. 43: No. 5, 2132-45(May 1972)</title><description>Experimental data for shock propagation along a 〈100〉 direction in single-crystal LiF show that elastic precursor decay is critically dependent on the origin of the sample. The most obvious differences among samples used are in their concentrations of impurities. It is suggested that divalent cation impurities are responsible for variations in precursor decay, and this is supported by results from a set of samples irradiated with γ rays to produce F centers. For the observed range of defect concentrations, quasistatic yield stresses varied monotonically with concentration from 0.02 kbar for pure crystals to 1.0 kbar for the hardest material studied. In the shock loading experiments both hard and soft crystals showed an initial rapid decay of the precursor to near-equilibrium values of about 2 kbar for the softest crystals and about 6 kbar for the hardest. For crystals of intermediate hardness the decay was much slower. From observed effects of annealing before shocking it is inferred that dislocation mechanisms in shock differ from those believed to operate at low strain rates. Impact stress for all experiments was about 28.6 kbar and sample thicknesses ranged from 0.27 to 15.44 mm.</description><subject>CRYSTAL LATTICES</subject><subject>DEFECTS</subject><subject>GAMMA RADIATION</subject><subject>LITHIUM FLUORIDES</subject><subject>LITHIUM FLUORIDES/shock propagation in $gamma$-irradiated, effects of point defects on elastic precursor decay in, (E/T)</subject><subject>MONOCRYSTALS</subject><subject>N74200 -Physics (Solid State)-Physical Properties</subject><subject>PHOTON BEAMS</subject><subject>RADIATION EFFECTS</subject><subject>RELAXATION</subject><subject>SHOCK WAVES</subject><subject>SHOCK WAVES/propagation in $gamma$-irradiated lithium fluorides, effects of point defects on elastic precursor decay in, (E/T)</subject><subject>WAVE PROPAGATION</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1972</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAYhIMoWFcP_oPgzUPXN59NvMnaVaHgHvQc3qYJVtZWknrYf2-X7Wlg5mEYhpBbBmsGWjywNdOaSS3PSMHA2LJSCs5JAcBZaWxlL8lVzt8AjBlhC_JYxxj8lOkY6W7sh4k-h8UYaL3HPPWe7lLwfymPaQ49Hmg_0KbfXpOLiPscbhZdkc9t_bF5LZv3l7fNU1N6ruRUoqw6IbxBoYJFjEJWnDMFXBmoWjAdKo1S2i7ElnONnW07rTEGDMFCNGJF7k694zzGZd9PwX_5cRjmmU5qBdqqGbo_QT6NOacQ3W_qfzAdHAN3fMYxtzwj_gGicFPC</recordid><startdate>19720101</startdate><enddate>19720101</enddate><creator>Asay, J. R.</creator><creator>Fowles, G. R.</creator><creator>Durall, G. E.</creator><creator>Miles, M. H.</creator><creator>Tinder, R. F.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19720101</creationdate><title>Effects of Point Defects on Elastic Precursor Decay in LiF</title><author>Asay, J. R. ; Fowles, G. R. ; Durall, G. E. ; Miles, M. H. ; Tinder, R. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-a47d33c8a35e9aaf3472215025807b08da56a449defb226ad9bd66afeaee90f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1972</creationdate><topic>CRYSTAL LATTICES</topic><topic>DEFECTS</topic><topic>GAMMA RADIATION</topic><topic>LITHIUM FLUORIDES</topic><topic>LITHIUM FLUORIDES/shock propagation in $gamma$-irradiated, effects of point defects on elastic precursor decay in, (E/T)</topic><topic>MONOCRYSTALS</topic><topic>N74200 -Physics (Solid State)-Physical Properties</topic><topic>PHOTON BEAMS</topic><topic>RADIATION EFFECTS</topic><topic>RELAXATION</topic><topic>SHOCK WAVES</topic><topic>SHOCK WAVES/propagation in $gamma$-irradiated lithium fluorides, effects of point defects on elastic precursor decay in, (E/T)</topic><topic>WAVE PROPAGATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asay, J. R.</creatorcontrib><creatorcontrib>Fowles, G. R.</creatorcontrib><creatorcontrib>Durall, G. E.</creatorcontrib><creatorcontrib>Miles, M. H.</creatorcontrib><creatorcontrib>Tinder, R. F.</creatorcontrib><creatorcontrib>Sandia Labs., Albuquerque, N. Mex</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Appl. Phys. 43: No. 5, 2132-45(May 1972)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asay, J. R.</au><au>Fowles, G. R.</au><au>Durall, G. E.</au><au>Miles, M. H.</au><au>Tinder, R. F.</au><aucorp>Sandia Labs., Albuquerque, N. Mex</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Point Defects on Elastic Precursor Decay in LiF</atitle><jtitle>J. Appl. Phys. 43: No. 5, 2132-45(May 1972)</jtitle><date>1972-01-01</date><risdate>1972</risdate><volume>43</volume><issue>5</issue><spage>2132</spage><epage>2145</epage><pages>2132-2145</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Experimental data for shock propagation along a 〈100〉 direction in single-crystal LiF show that elastic precursor decay is critically dependent on the origin of the sample. The most obvious differences among samples used are in their concentrations of impurities. It is suggested that divalent cation impurities are responsible for variations in precursor decay, and this is supported by results from a set of samples irradiated with γ rays to produce F centers. For the observed range of defect concentrations, quasistatic yield stresses varied monotonically with concentration from 0.02 kbar for pure crystals to 1.0 kbar for the hardest material studied. In the shock loading experiments both hard and soft crystals showed an initial rapid decay of the precursor to near-equilibrium values of about 2 kbar for the softest crystals and about 6 kbar for the hardest. For crystals of intermediate hardness the decay was much slower. From observed effects of annealing before shocking it is inferred that dislocation mechanisms in shock differ from those believed to operate at low strain rates. Impact stress for all experiments was about 28.6 kbar and sample thicknesses ranged from 0.27 to 15.44 mm.</abstract><doi>10.1063/1.1661464</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof J. Appl. Phys. 43: No. 5, 2132-45(May 1972), 1972-01, Vol.43 (5), p.2132-2145
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_1661464
source AIP Digital Archive
subjects CRYSTAL LATTICES
DEFECTS
GAMMA RADIATION
LITHIUM FLUORIDES
LITHIUM FLUORIDES/shock propagation in $gamma$-irradiated, effects of point defects on elastic precursor decay in, (E/T)
MONOCRYSTALS
N74200 -Physics (Solid State)-Physical Properties
PHOTON BEAMS
RADIATION EFFECTS
RELAXATION
SHOCK WAVES
SHOCK WAVES/propagation in $gamma$-irradiated lithium fluorides, effects of point defects on elastic precursor decay in, (E/T)
WAVE PROPAGATION
title Effects of Point Defects on Elastic Precursor Decay in LiF
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Point%20Defects%20on%20Elastic%20Precursor%20Decay%20in%20LiF&rft.jtitle=J.%20Appl.%20Phys.%2043:%20No.%205,%202132-45(May%201972)&rft.au=Asay,%20J.%20R.&rft.aucorp=Sandia%20Labs.,%20Albuquerque,%20N.%20Mex&rft.date=1972-01-01&rft.volume=43&rft.issue=5&rft.spage=2132&rft.epage=2145&rft.pages=2132-2145&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1661464&rft_dat=%3Ccrossref_osti_%3E10_1063_1_1661464%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true