Effects of Point Defects on Elastic Precursor Decay in LiF
Experimental data for shock propagation along a 〈100〉 direction in single-crystal LiF show that elastic precursor decay is critically dependent on the origin of the sample. The most obvious differences among samples used are in their concentrations of impurities. It is suggested that divalent cation...
Gespeichert in:
Veröffentlicht in: | J. Appl. Phys. 43: No. 5, 2132-45(May 1972) 2132-45(May 1972), 1972-01, Vol.43 (5), p.2132-2145 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2145 |
---|---|
container_issue | 5 |
container_start_page | 2132 |
container_title | J. Appl. Phys. 43: No. 5, 2132-45(May 1972) |
container_volume | 43 |
creator | Asay, J. R. Fowles, G. R. Durall, G. E. Miles, M. H. Tinder, R. F. |
description | Experimental data for shock propagation along a 〈100〉 direction in single-crystal LiF show that elastic precursor decay is critically dependent on the origin of the sample. The most obvious differences among samples used are in their concentrations of impurities. It is suggested that divalent cation impurities are responsible for variations in precursor decay, and this is supported by results from a set of samples irradiated with γ rays to produce F centers. For the observed range of defect concentrations, quasistatic yield stresses varied monotonically with concentration from 0.02 kbar for pure crystals to 1.0 kbar for the hardest material studied. In the shock loading experiments both hard and soft crystals showed an initial rapid decay of the precursor to near-equilibrium values of about 2 kbar for the softest crystals and about 6 kbar for the hardest. For crystals of intermediate hardness the decay was much slower. From observed effects of annealing before shocking it is inferred that dislocation mechanisms in shock differ from those believed to operate at low strain rates. Impact stress for all experiments was about 28.6 kbar and sample thicknesses ranged from 0.27 to 15.44 mm. |
doi_str_mv | 10.1063/1.1661464 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1661464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1661464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-a47d33c8a35e9aaf3472215025807b08da56a449defb226ad9bd66afeaee90f83</originalsourceid><addsrcrecordid>eNotkE1LxDAYhIMoWFcP_oPgzUPXN59NvMnaVaHgHvQc3qYJVtZWknrYf2-X7Wlg5mEYhpBbBmsGWjywNdOaSS3PSMHA2LJSCs5JAcBZaWxlL8lVzt8AjBlhC_JYxxj8lOkY6W7sh4k-h8UYaL3HPPWe7lLwfymPaQ49Hmg_0KbfXpOLiPscbhZdkc9t_bF5LZv3l7fNU1N6ruRUoqw6IbxBoYJFjEJWnDMFXBmoWjAdKo1S2i7ElnONnW07rTEGDMFCNGJF7k694zzGZd9PwX_5cRjmmU5qBdqqGbo_QT6NOacQ3W_qfzAdHAN3fMYxtzwj_gGicFPC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of Point Defects on Elastic Precursor Decay in LiF</title><source>AIP Digital Archive</source><creator>Asay, J. R. ; Fowles, G. R. ; Durall, G. E. ; Miles, M. H. ; Tinder, R. F.</creator><creatorcontrib>Asay, J. R. ; Fowles, G. R. ; Durall, G. E. ; Miles, M. H. ; Tinder, R. F. ; Sandia Labs., Albuquerque, N. Mex</creatorcontrib><description>Experimental data for shock propagation along a 〈100〉 direction in single-crystal LiF show that elastic precursor decay is critically dependent on the origin of the sample. The most obvious differences among samples used are in their concentrations of impurities. It is suggested that divalent cation impurities are responsible for variations in precursor decay, and this is supported by results from a set of samples irradiated with γ rays to produce F centers. For the observed range of defect concentrations, quasistatic yield stresses varied monotonically with concentration from 0.02 kbar for pure crystals to 1.0 kbar for the hardest material studied. In the shock loading experiments both hard and soft crystals showed an initial rapid decay of the precursor to near-equilibrium values of about 2 kbar for the softest crystals and about 6 kbar for the hardest. For crystals of intermediate hardness the decay was much slower. From observed effects of annealing before shocking it is inferred that dislocation mechanisms in shock differ from those believed to operate at low strain rates. Impact stress for all experiments was about 28.6 kbar and sample thicknesses ranged from 0.27 to 15.44 mm.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1661464</identifier><language>eng</language><subject>CRYSTAL LATTICES ; DEFECTS ; GAMMA RADIATION ; LITHIUM FLUORIDES ; LITHIUM FLUORIDES/shock propagation in $gamma$-irradiated, effects of point defects on elastic precursor decay in, (E/T) ; MONOCRYSTALS ; N74200 -Physics (Solid State)-Physical Properties ; PHOTON BEAMS ; RADIATION EFFECTS ; RELAXATION ; SHOCK WAVES ; SHOCK WAVES/propagation in $gamma$-irradiated lithium fluorides, effects of point defects on elastic precursor decay in, (E/T) ; WAVE PROPAGATION</subject><ispartof>J. Appl. Phys. 43: No. 5, 2132-45(May 1972), 1972-01, Vol.43 (5), p.2132-2145</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c254t-a47d33c8a35e9aaf3472215025807b08da56a449defb226ad9bd66afeaee90f83</citedby><cites>FETCH-LOGICAL-c254t-a47d33c8a35e9aaf3472215025807b08da56a449defb226ad9bd66afeaee90f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4650695$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Asay, J. R.</creatorcontrib><creatorcontrib>Fowles, G. R.</creatorcontrib><creatorcontrib>Durall, G. E.</creatorcontrib><creatorcontrib>Miles, M. H.</creatorcontrib><creatorcontrib>Tinder, R. F.</creatorcontrib><creatorcontrib>Sandia Labs., Albuquerque, N. Mex</creatorcontrib><title>Effects of Point Defects on Elastic Precursor Decay in LiF</title><title>J. Appl. Phys. 43: No. 5, 2132-45(May 1972)</title><description>Experimental data for shock propagation along a 〈100〉 direction in single-crystal LiF show that elastic precursor decay is critically dependent on the origin of the sample. The most obvious differences among samples used are in their concentrations of impurities. It is suggested that divalent cation impurities are responsible for variations in precursor decay, and this is supported by results from a set of samples irradiated with γ rays to produce F centers. For the observed range of defect concentrations, quasistatic yield stresses varied monotonically with concentration from 0.02 kbar for pure crystals to 1.0 kbar for the hardest material studied. In the shock loading experiments both hard and soft crystals showed an initial rapid decay of the precursor to near-equilibrium values of about 2 kbar for the softest crystals and about 6 kbar for the hardest. For crystals of intermediate hardness the decay was much slower. From observed effects of annealing before shocking it is inferred that dislocation mechanisms in shock differ from those believed to operate at low strain rates. Impact stress for all experiments was about 28.6 kbar and sample thicknesses ranged from 0.27 to 15.44 mm.</description><subject>CRYSTAL LATTICES</subject><subject>DEFECTS</subject><subject>GAMMA RADIATION</subject><subject>LITHIUM FLUORIDES</subject><subject>LITHIUM FLUORIDES/shock propagation in $gamma$-irradiated, effects of point defects on elastic precursor decay in, (E/T)</subject><subject>MONOCRYSTALS</subject><subject>N74200 -Physics (Solid State)-Physical Properties</subject><subject>PHOTON BEAMS</subject><subject>RADIATION EFFECTS</subject><subject>RELAXATION</subject><subject>SHOCK WAVES</subject><subject>SHOCK WAVES/propagation in $gamma$-irradiated lithium fluorides, effects of point defects on elastic precursor decay in, (E/T)</subject><subject>WAVE PROPAGATION</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1972</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAYhIMoWFcP_oPgzUPXN59NvMnaVaHgHvQc3qYJVtZWknrYf2-X7Wlg5mEYhpBbBmsGWjywNdOaSS3PSMHA2LJSCs5JAcBZaWxlL8lVzt8AjBlhC_JYxxj8lOkY6W7sh4k-h8UYaL3HPPWe7lLwfymPaQ49Hmg_0KbfXpOLiPscbhZdkc9t_bF5LZv3l7fNU1N6ruRUoqw6IbxBoYJFjEJWnDMFXBmoWjAdKo1S2i7ElnONnW07rTEGDMFCNGJF7k694zzGZd9PwX_5cRjmmU5qBdqqGbo_QT6NOacQ3W_qfzAdHAN3fMYxtzwj_gGicFPC</recordid><startdate>19720101</startdate><enddate>19720101</enddate><creator>Asay, J. R.</creator><creator>Fowles, G. R.</creator><creator>Durall, G. E.</creator><creator>Miles, M. H.</creator><creator>Tinder, R. F.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19720101</creationdate><title>Effects of Point Defects on Elastic Precursor Decay in LiF</title><author>Asay, J. R. ; Fowles, G. R. ; Durall, G. E. ; Miles, M. H. ; Tinder, R. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-a47d33c8a35e9aaf3472215025807b08da56a449defb226ad9bd66afeaee90f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1972</creationdate><topic>CRYSTAL LATTICES</topic><topic>DEFECTS</topic><topic>GAMMA RADIATION</topic><topic>LITHIUM FLUORIDES</topic><topic>LITHIUM FLUORIDES/shock propagation in $gamma$-irradiated, effects of point defects on elastic precursor decay in, (E/T)</topic><topic>MONOCRYSTALS</topic><topic>N74200 -Physics (Solid State)-Physical Properties</topic><topic>PHOTON BEAMS</topic><topic>RADIATION EFFECTS</topic><topic>RELAXATION</topic><topic>SHOCK WAVES</topic><topic>SHOCK WAVES/propagation in $gamma$-irradiated lithium fluorides, effects of point defects on elastic precursor decay in, (E/T)</topic><topic>WAVE PROPAGATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asay, J. R.</creatorcontrib><creatorcontrib>Fowles, G. R.</creatorcontrib><creatorcontrib>Durall, G. E.</creatorcontrib><creatorcontrib>Miles, M. H.</creatorcontrib><creatorcontrib>Tinder, R. F.</creatorcontrib><creatorcontrib>Sandia Labs., Albuquerque, N. Mex</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Appl. Phys. 43: No. 5, 2132-45(May 1972)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asay, J. R.</au><au>Fowles, G. R.</au><au>Durall, G. E.</au><au>Miles, M. H.</au><au>Tinder, R. F.</au><aucorp>Sandia Labs., Albuquerque, N. Mex</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Point Defects on Elastic Precursor Decay in LiF</atitle><jtitle>J. Appl. Phys. 43: No. 5, 2132-45(May 1972)</jtitle><date>1972-01-01</date><risdate>1972</risdate><volume>43</volume><issue>5</issue><spage>2132</spage><epage>2145</epage><pages>2132-2145</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Experimental data for shock propagation along a 〈100〉 direction in single-crystal LiF show that elastic precursor decay is critically dependent on the origin of the sample. The most obvious differences among samples used are in their concentrations of impurities. It is suggested that divalent cation impurities are responsible for variations in precursor decay, and this is supported by results from a set of samples irradiated with γ rays to produce F centers. For the observed range of defect concentrations, quasistatic yield stresses varied monotonically with concentration from 0.02 kbar for pure crystals to 1.0 kbar for the hardest material studied. In the shock loading experiments both hard and soft crystals showed an initial rapid decay of the precursor to near-equilibrium values of about 2 kbar for the softest crystals and about 6 kbar for the hardest. For crystals of intermediate hardness the decay was much slower. From observed effects of annealing before shocking it is inferred that dislocation mechanisms in shock differ from those believed to operate at low strain rates. Impact stress for all experiments was about 28.6 kbar and sample thicknesses ranged from 0.27 to 15.44 mm.</abstract><doi>10.1063/1.1661464</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | J. Appl. Phys. 43: No. 5, 2132-45(May 1972), 1972-01, Vol.43 (5), p.2132-2145 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1661464 |
source | AIP Digital Archive |
subjects | CRYSTAL LATTICES DEFECTS GAMMA RADIATION LITHIUM FLUORIDES LITHIUM FLUORIDES/shock propagation in $gamma$-irradiated, effects of point defects on elastic precursor decay in, (E/T) MONOCRYSTALS N74200 -Physics (Solid State)-Physical Properties PHOTON BEAMS RADIATION EFFECTS RELAXATION SHOCK WAVES SHOCK WAVES/propagation in $gamma$-irradiated lithium fluorides, effects of point defects on elastic precursor decay in, (E/T) WAVE PROPAGATION |
title | Effects of Point Defects on Elastic Precursor Decay in LiF |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Point%20Defects%20on%20Elastic%20Precursor%20Decay%20in%20LiF&rft.jtitle=J.%20Appl.%20Phys.%2043:%20No.%205,%202132-45(May%201972)&rft.au=Asay,%20J.%20R.&rft.aucorp=Sandia%20Labs.,%20Albuquerque,%20N.%20Mex&rft.date=1972-01-01&rft.volume=43&rft.issue=5&rft.spage=2132&rft.epage=2145&rft.pages=2132-2145&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1661464&rft_dat=%3Ccrossref_osti_%3E10_1063_1_1661464%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |