Equidistant spectra of anharmonic oscillators

Some representative potentials of the anharmonic‐oscillator type are constructed. Some corresponding spectra‐shift operators are also constructed. These operators are a natural generalization of Fok creation and annihilation operators. The Schrödinger problem for these potentials leads to an equidis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 1994-03, Vol.4 (1), p.47-53
Hauptverfasser: Dubov, S. Yu, Eleonskii, V. M., Kulagin, N. E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue 1
container_start_page 47
container_title Chaos (Woodbury, N.Y.)
container_volume 4
creator Dubov, S. Yu
Eleonskii, V. M.
Kulagin, N. E.
description Some representative potentials of the anharmonic‐oscillator type are constructed. Some corresponding spectra‐shift operators are also constructed. These operators are a natural generalization of Fok creation and annihilation operators. The Schrödinger problem for these potentials leads to an equidistant energy spectrum for all excited states, which are separated from the ground state by an energy gap. The general properties of the dynamic system generated by spectral‐shift operators of third degree are analyzed. Several examples of such anharmonic oscillators are discussed. The relationship between the eigenvectors of the Schrödinger problem and a certain type of nonclassical orthogonal polynomials is established.
doi_str_mv 10.1063/1.166056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_166056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859405840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-6029fa5a05e02fdc2a9ec27a2cceab5826b403e7ad7c3cf5f164b40993d7e1843</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlbBXyB71MPWmewmmz1KqR9Q8KLnkGYTjHQ32yQr-O_d0lIPgqcZhodnZl5CrhHmCLy4xzlyDoyfkCmCqPOKC3q661mZIwOYkIsYPwEAacHOyQRpJQAEm5J8uR1c42JSXcpib3QKKvM2U92HCq3vnM581G6zUcmHeEnOrNpEc3WoM_L-uHxbPOer16eXxcMq1yWylHOgtVVMATNAbaOpqo2mlaJaG7VmgvJ1CYWpVFPpQltmkZfjpK6LpjIoymJGbvfePvjtYGKSrYvajFd0xg9RomB1CUyMliOqg48xGCv74FoVviWC3IUjUe7DGdGbg3VYt6b5BQ9pjMDdHhg_Tio53x2ZLx-OItk39j_2z-IfMh15mA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859405840</pqid></control><display><type>article</type><title>Equidistant spectra of anharmonic oscillators</title><source>AIP Digital Archive</source><creator>Dubov, S. Yu ; Eleonskii, V. M. ; Kulagin, N. E.</creator><creatorcontrib>Dubov, S. Yu ; Eleonskii, V. M. ; Kulagin, N. E.</creatorcontrib><description>Some representative potentials of the anharmonic‐oscillator type are constructed. Some corresponding spectra‐shift operators are also constructed. These operators are a natural generalization of Fok creation and annihilation operators. The Schrödinger problem for these potentials leads to an equidistant energy spectrum for all excited states, which are separated from the ground state by an energy gap. The general properties of the dynamic system generated by spectral‐shift operators of third degree are analyzed. Several examples of such anharmonic oscillators are discussed. The relationship between the eigenvectors of the Schrödinger problem and a certain type of nonclassical orthogonal polynomials is established.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.166056</identifier><identifier>PMID: 12780085</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States</publisher><ispartof>Chaos (Woodbury, N.Y.), 1994-03, Vol.4 (1), p.47-53</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-6029fa5a05e02fdc2a9ec27a2cceab5826b403e7ad7c3cf5f164b40993d7e1843</citedby><cites>FETCH-LOGICAL-c415t-6029fa5a05e02fdc2a9ec27a2cceab5826b403e7ad7c3cf5f164b40993d7e1843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1560,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12780085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubov, S. Yu</creatorcontrib><creatorcontrib>Eleonskii, V. M.</creatorcontrib><creatorcontrib>Kulagin, N. E.</creatorcontrib><title>Equidistant spectra of anharmonic oscillators</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Some representative potentials of the anharmonic‐oscillator type are constructed. Some corresponding spectra‐shift operators are also constructed. These operators are a natural generalization of Fok creation and annihilation operators. The Schrödinger problem for these potentials leads to an equidistant energy spectrum for all excited states, which are separated from the ground state by an energy gap. The general properties of the dynamic system generated by spectral‐shift operators of third degree are analyzed. Several examples of such anharmonic oscillators are discussed. The relationship between the eigenvectors of the Schrödinger problem and a certain type of nonclassical orthogonal polynomials is established.</description><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMotlbBXyB71MPWmewmmz1KqR9Q8KLnkGYTjHQ32yQr-O_d0lIPgqcZhodnZl5CrhHmCLy4xzlyDoyfkCmCqPOKC3q661mZIwOYkIsYPwEAacHOyQRpJQAEm5J8uR1c42JSXcpib3QKKvM2U92HCq3vnM581G6zUcmHeEnOrNpEc3WoM_L-uHxbPOer16eXxcMq1yWylHOgtVVMATNAbaOpqo2mlaJaG7VmgvJ1CYWpVFPpQltmkZfjpK6LpjIoymJGbvfePvjtYGKSrYvajFd0xg9RomB1CUyMliOqg48xGCv74FoVviWC3IUjUe7DGdGbg3VYt6b5BQ9pjMDdHhg_Tio53x2ZLx-OItk39j_2z-IfMh15mA</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>Dubov, S. Yu</creator><creator>Eleonskii, V. M.</creator><creator>Kulagin, N. E.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19940301</creationdate><title>Equidistant spectra of anharmonic oscillators</title><author>Dubov, S. Yu ; Eleonskii, V. M. ; Kulagin, N. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-6029fa5a05e02fdc2a9ec27a2cceab5826b403e7ad7c3cf5f164b40993d7e1843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubov, S. Yu</creatorcontrib><creatorcontrib>Eleonskii, V. M.</creatorcontrib><creatorcontrib>Kulagin, N. E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubov, S. Yu</au><au>Eleonskii, V. M.</au><au>Kulagin, N. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equidistant spectra of anharmonic oscillators</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>1994-03-01</date><risdate>1994</risdate><volume>4</volume><issue>1</issue><spage>47</spage><epage>53</epage><pages>47-53</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Some representative potentials of the anharmonic‐oscillator type are constructed. Some corresponding spectra‐shift operators are also constructed. These operators are a natural generalization of Fok creation and annihilation operators. The Schrödinger problem for these potentials leads to an equidistant energy spectrum for all excited states, which are separated from the ground state by an energy gap. The general properties of the dynamic system generated by spectral‐shift operators of third degree are analyzed. Several examples of such anharmonic oscillators are discussed. The relationship between the eigenvectors of the Schrödinger problem and a certain type of nonclassical orthogonal polynomials is established.</abstract><cop>United States</cop><pmid>12780085</pmid><doi>10.1063/1.166056</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 1994-03, Vol.4 (1), p.47-53
issn 1054-1500
1089-7682
language eng
recordid cdi_crossref_primary_10_1063_1_166056
source AIP Digital Archive
title Equidistant spectra of anharmonic oscillators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equidistant%20spectra%20of%20anharmonic%20oscillators&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Dubov,%20S.%20Yu&rft.date=1994-03-01&rft.volume=4&rft.issue=1&rft.spage=47&rft.epage=53&rft.pages=47-53&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.166056&rft_dat=%3Cproquest_cross%3E1859405840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859405840&rft_id=info:pmid/12780085&rfr_iscdi=true