Equidistant spectra of anharmonic oscillators
Some representative potentials of the anharmonic‐oscillator type are constructed. Some corresponding spectra‐shift operators are also constructed. These operators are a natural generalization of Fok creation and annihilation operators. The Schrödinger problem for these potentials leads to an equidis...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 1994-03, Vol.4 (1), p.47-53 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | 1 |
container_start_page | 47 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 4 |
creator | Dubov, S. Yu Eleonskii, V. M. Kulagin, N. E. |
description | Some representative potentials of the anharmonic‐oscillator type are constructed. Some corresponding spectra‐shift operators are also constructed. These operators are a natural generalization of Fok creation and annihilation operators. The Schrödinger problem for these potentials leads to an equidistant energy spectrum for all excited states, which are separated from the ground state by an energy gap. The general properties of the dynamic system generated by spectral‐shift operators of third degree are analyzed. Several examples of such anharmonic oscillators are discussed. The relationship between the eigenvectors of the Schrödinger problem and a certain type of nonclassical orthogonal polynomials is established. |
doi_str_mv | 10.1063/1.166056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_166056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859405840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-6029fa5a05e02fdc2a9ec27a2cceab5826b403e7ad7c3cf5f164b40993d7e1843</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlbBXyB71MPWmewmmz1KqR9Q8KLnkGYTjHQ32yQr-O_d0lIPgqcZhodnZl5CrhHmCLy4xzlyDoyfkCmCqPOKC3q661mZIwOYkIsYPwEAacHOyQRpJQAEm5J8uR1c42JSXcpib3QKKvM2U92HCq3vnM581G6zUcmHeEnOrNpEc3WoM_L-uHxbPOer16eXxcMq1yWylHOgtVVMATNAbaOpqo2mlaJaG7VmgvJ1CYWpVFPpQltmkZfjpK6LpjIoymJGbvfePvjtYGKSrYvajFd0xg9RomB1CUyMliOqg48xGCv74FoVviWC3IUjUe7DGdGbg3VYt6b5BQ9pjMDdHhg_Tio53x2ZLx-OItk39j_2z-IfMh15mA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859405840</pqid></control><display><type>article</type><title>Equidistant spectra of anharmonic oscillators</title><source>AIP Digital Archive</source><creator>Dubov, S. Yu ; Eleonskii, V. M. ; Kulagin, N. E.</creator><creatorcontrib>Dubov, S. Yu ; Eleonskii, V. M. ; Kulagin, N. E.</creatorcontrib><description>Some representative potentials of the anharmonic‐oscillator type are constructed. Some corresponding spectra‐shift operators are also constructed. These operators are a natural generalization of Fok creation and annihilation operators. The Schrödinger problem for these potentials leads to an equidistant energy spectrum for all excited states, which are separated from the ground state by an energy gap. The general properties of the dynamic system generated by spectral‐shift operators of third degree are analyzed. Several examples of such anharmonic oscillators are discussed. The relationship between the eigenvectors of the Schrödinger problem and a certain type of nonclassical orthogonal polynomials is established.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.166056</identifier><identifier>PMID: 12780085</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States</publisher><ispartof>Chaos (Woodbury, N.Y.), 1994-03, Vol.4 (1), p.47-53</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-6029fa5a05e02fdc2a9ec27a2cceab5826b403e7ad7c3cf5f164b40993d7e1843</citedby><cites>FETCH-LOGICAL-c415t-6029fa5a05e02fdc2a9ec27a2cceab5826b403e7ad7c3cf5f164b40993d7e1843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1560,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12780085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubov, S. Yu</creatorcontrib><creatorcontrib>Eleonskii, V. M.</creatorcontrib><creatorcontrib>Kulagin, N. E.</creatorcontrib><title>Equidistant spectra of anharmonic oscillators</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Some representative potentials of the anharmonic‐oscillator type are constructed. Some corresponding spectra‐shift operators are also constructed. These operators are a natural generalization of Fok creation and annihilation operators. The Schrödinger problem for these potentials leads to an equidistant energy spectrum for all excited states, which are separated from the ground state by an energy gap. The general properties of the dynamic system generated by spectral‐shift operators of third degree are analyzed. Several examples of such anharmonic oscillators are discussed. The relationship between the eigenvectors of the Schrödinger problem and a certain type of nonclassical orthogonal polynomials is established.</description><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMotlbBXyB71MPWmewmmz1KqR9Q8KLnkGYTjHQ32yQr-O_d0lIPgqcZhodnZl5CrhHmCLy4xzlyDoyfkCmCqPOKC3q661mZIwOYkIsYPwEAacHOyQRpJQAEm5J8uR1c42JSXcpib3QKKvM2U92HCq3vnM581G6zUcmHeEnOrNpEc3WoM_L-uHxbPOer16eXxcMq1yWylHOgtVVMATNAbaOpqo2mlaJaG7VmgvJ1CYWpVFPpQltmkZfjpK6LpjIoymJGbvfePvjtYGKSrYvajFd0xg9RomB1CUyMliOqg48xGCv74FoVviWC3IUjUe7DGdGbg3VYt6b5BQ9pjMDdHhg_Tio53x2ZLx-OItk39j_2z-IfMh15mA</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>Dubov, S. Yu</creator><creator>Eleonskii, V. M.</creator><creator>Kulagin, N. E.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19940301</creationdate><title>Equidistant spectra of anharmonic oscillators</title><author>Dubov, S. Yu ; Eleonskii, V. M. ; Kulagin, N. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-6029fa5a05e02fdc2a9ec27a2cceab5826b403e7ad7c3cf5f164b40993d7e1843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubov, S. Yu</creatorcontrib><creatorcontrib>Eleonskii, V. M.</creatorcontrib><creatorcontrib>Kulagin, N. E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubov, S. Yu</au><au>Eleonskii, V. M.</au><au>Kulagin, N. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equidistant spectra of anharmonic oscillators</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>1994-03-01</date><risdate>1994</risdate><volume>4</volume><issue>1</issue><spage>47</spage><epage>53</epage><pages>47-53</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Some representative potentials of the anharmonic‐oscillator type are constructed. Some corresponding spectra‐shift operators are also constructed. These operators are a natural generalization of Fok creation and annihilation operators. The Schrödinger problem for these potentials leads to an equidistant energy spectrum for all excited states, which are separated from the ground state by an energy gap. The general properties of the dynamic system generated by spectral‐shift operators of third degree are analyzed. Several examples of such anharmonic oscillators are discussed. The relationship between the eigenvectors of the Schrödinger problem and a certain type of nonclassical orthogonal polynomials is established.</abstract><cop>United States</cop><pmid>12780085</pmid><doi>10.1063/1.166056</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 1994-03, Vol.4 (1), p.47-53 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_166056 |
source | AIP Digital Archive |
title | Equidistant spectra of anharmonic oscillators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equidistant%20spectra%20of%20anharmonic%20oscillators&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Dubov,%20S.%20Yu&rft.date=1994-03-01&rft.volume=4&rft.issue=1&rft.spage=47&rft.epage=53&rft.pages=47-53&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.166056&rft_dat=%3Cproquest_cross%3E1859405840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859405840&rft_id=info:pmid/12780085&rfr_iscdi=true |