Measurement and Interpretation of Dynamic Spectrograms of Picosecond Light Pulses

A dynamic spectrogram depicts intensity as a function of frequency and time simultaneously, subject to the classical uncertainty relation δωδt≈2π. For an optical pulse having the Fourier transform |g(ω)|eiφ(ω), high-resolution spectroscopy gives |g(ω)|2, while the dynamic spectrogram gives knowledge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1971-01, Vol.42 (10), p.3848-3858
1. Verfasser: Treacy, E. B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3858
container_issue 10
container_start_page 3848
container_title Journal of applied physics
container_volume 42
creator Treacy, E. B.
description A dynamic spectrogram depicts intensity as a function of frequency and time simultaneously, subject to the classical uncertainty relation δωδt≈2π. For an optical pulse having the Fourier transform |g(ω)|eiφ(ω), high-resolution spectroscopy gives |g(ω)|2, while the dynamic spectrogram gives knowledge of ∂φ(ω)/∂ω permitting reconstruction of many features of the amplitude and phase modulations of the original pulse. Linear, parabolic, and two sinusoidal spectrogram shapes are interpreted theoretically. An instrument for measuring dynamic spectrograms is described. It involves the use of a spectrometer with ultrafast time response and has been used in an antisymmetric mode to measure frequency sweep rate as a function of wavelength for picosecond laser pulses. The change in the dynamic spectrogram of a pulse brought about by linear pulse compression and the resultant change in pulse envelope shape have been computed for a typical picosecond pulse.
doi_str_mv 10.1063/1.1659696
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1659696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1659696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-e0b78e4636b06e84568332c2d918b601fbfc6f205b2393bdbfc6e241564228fc3</originalsourceid><addsrcrecordid>eNotkDtPwzAUhS0EEqEw8A-yMqTcayeOPaICpVIQRcAcOc51CSIP2e7Qf08jOp2HdM7wMXaLsESQ4h6XKAsttTxjCYLSWVkUcM4SAI6Z0qW-ZFch_AAgKqET9v5KJuw99TTE1Axtuhki-clTNLEbh3R06eNhMH1n04-JbPTjzps-zP22s2MgOx5HVbf7jul2_xsoXLMLZ47m5qQL9vX89Ll6yaq39Wb1UGWW8zJmBE2pKJdCNiBJ5YVUQnDLW42qkYCucVY6DkXDhRZNO0fiORYy51w5Kxbs7v_X-jEET66efNcbf6gR6plFjfWJhfgDXlVRSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Measurement and Interpretation of Dynamic Spectrograms of Picosecond Light Pulses</title><source>AIP Digital Archive</source><creator>Treacy, E. B.</creator><creatorcontrib>Treacy, E. B.</creatorcontrib><description>A dynamic spectrogram depicts intensity as a function of frequency and time simultaneously, subject to the classical uncertainty relation δωδt≈2π. For an optical pulse having the Fourier transform |g(ω)|eiφ(ω), high-resolution spectroscopy gives |g(ω)|2, while the dynamic spectrogram gives knowledge of ∂φ(ω)/∂ω permitting reconstruction of many features of the amplitude and phase modulations of the original pulse. Linear, parabolic, and two sinusoidal spectrogram shapes are interpreted theoretically. An instrument for measuring dynamic spectrograms is described. It involves the use of a spectrometer with ultrafast time response and has been used in an antisymmetric mode to measure frequency sweep rate as a function of wavelength for picosecond laser pulses. The change in the dynamic spectrogram of a pulse brought about by linear pulse compression and the resultant change in pulse envelope shape have been computed for a typical picosecond pulse.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1659696</identifier><language>eng</language><ispartof>Journal of applied physics, 1971-01, Vol.42 (10), p.3848-3858</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-e0b78e4636b06e84568332c2d918b601fbfc6f205b2393bdbfc6e241564228fc3</citedby><cites>FETCH-LOGICAL-c227t-e0b78e4636b06e84568332c2d918b601fbfc6f205b2393bdbfc6e241564228fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Treacy, E. B.</creatorcontrib><title>Measurement and Interpretation of Dynamic Spectrograms of Picosecond Light Pulses</title><title>Journal of applied physics</title><description>A dynamic spectrogram depicts intensity as a function of frequency and time simultaneously, subject to the classical uncertainty relation δωδt≈2π. For an optical pulse having the Fourier transform |g(ω)|eiφ(ω), high-resolution spectroscopy gives |g(ω)|2, while the dynamic spectrogram gives knowledge of ∂φ(ω)/∂ω permitting reconstruction of many features of the amplitude and phase modulations of the original pulse. Linear, parabolic, and two sinusoidal spectrogram shapes are interpreted theoretically. An instrument for measuring dynamic spectrograms is described. It involves the use of a spectrometer with ultrafast time response and has been used in an antisymmetric mode to measure frequency sweep rate as a function of wavelength for picosecond laser pulses. The change in the dynamic spectrogram of a pulse brought about by linear pulse compression and the resultant change in pulse envelope shape have been computed for a typical picosecond pulse.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1971</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAUhS0EEqEw8A-yMqTcayeOPaICpVIQRcAcOc51CSIP2e7Qf08jOp2HdM7wMXaLsESQ4h6XKAsttTxjCYLSWVkUcM4SAI6Z0qW-ZFch_AAgKqET9v5KJuw99TTE1Axtuhki-clTNLEbh3R06eNhMH1n04-JbPTjzps-zP22s2MgOx5HVbf7jul2_xsoXLMLZ47m5qQL9vX89Ll6yaq39Wb1UGWW8zJmBE2pKJdCNiBJ5YVUQnDLW42qkYCucVY6DkXDhRZNO0fiORYy51w5Kxbs7v_X-jEET66efNcbf6gR6plFjfWJhfgDXlVRSw</recordid><startdate>19710101</startdate><enddate>19710101</enddate><creator>Treacy, E. B.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19710101</creationdate><title>Measurement and Interpretation of Dynamic Spectrograms of Picosecond Light Pulses</title><author>Treacy, E. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-e0b78e4636b06e84568332c2d918b601fbfc6f205b2393bdbfc6e241564228fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1971</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Treacy, E. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Treacy, E. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement and Interpretation of Dynamic Spectrograms of Picosecond Light Pulses</atitle><jtitle>Journal of applied physics</jtitle><date>1971-01-01</date><risdate>1971</risdate><volume>42</volume><issue>10</issue><spage>3848</spage><epage>3858</epage><pages>3848-3858</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>A dynamic spectrogram depicts intensity as a function of frequency and time simultaneously, subject to the classical uncertainty relation δωδt≈2π. For an optical pulse having the Fourier transform |g(ω)|eiφ(ω), high-resolution spectroscopy gives |g(ω)|2, while the dynamic spectrogram gives knowledge of ∂φ(ω)/∂ω permitting reconstruction of many features of the amplitude and phase modulations of the original pulse. Linear, parabolic, and two sinusoidal spectrogram shapes are interpreted theoretically. An instrument for measuring dynamic spectrograms is described. It involves the use of a spectrometer with ultrafast time response and has been used in an antisymmetric mode to measure frequency sweep rate as a function of wavelength for picosecond laser pulses. The change in the dynamic spectrogram of a pulse brought about by linear pulse compression and the resultant change in pulse envelope shape have been computed for a typical picosecond pulse.</abstract><doi>10.1063/1.1659696</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1971-01, Vol.42 (10), p.3848-3858
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_1659696
source AIP Digital Archive
title Measurement and Interpretation of Dynamic Spectrograms of Picosecond Light Pulses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20and%20Interpretation%20of%20Dynamic%20Spectrograms%20of%20Picosecond%20Light%20Pulses&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Treacy,%20E.%20B.&rft.date=1971-01-01&rft.volume=42&rft.issue=10&rft.spage=3848&rft.epage=3858&rft.pages=3848-3858&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1659696&rft_dat=%3Ccrossref%3E10_1063_1_1659696%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true