Correlation Theorem for Nonstationary Complex Stochastic Processes of a Real Variable

The object of this paper is to derive a general correlation theorem for a class of complex stochastic processes of a real argument. By means of this theorem, the correlation functions and the time-power spectral densities, which are defined by averaging the realizations of the processes and their ru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1971-09, Vol.42 (10), p.3659-3666
1. Verfasser: Kouskoulas, Vasilios
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3666
container_issue 10
container_start_page 3659
container_title Journal of applied physics
container_volume 42
creator Kouskoulas, Vasilios
description The object of this paper is to derive a general correlation theorem for a class of complex stochastic processes of a real argument. By means of this theorem, the correlation functions and the time-power spectral densities, which are defined by averaging the realizations of the processes and their running spectra, respectively, are related to each other by a pair of one-dimensional integral transformations. This theorem is reduced to corresponding theorems for other classes of stochastic processes which form subsets of the set of processes under consideration. The properties of the correlation functions and time-power spectral densities along with questions concerning conditions for the existence and usefulness of these concepts in scientific and engineering applications occupy a good portion of this paper.
doi_str_mv 10.1063/1.1659664
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1659664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1659664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c142t-840ba00c84332dc9681bdda6ab2d6448f33a466b92117f095e5980df02a58e863</originalsourceid><addsrcrecordid>eNotkEtLxDAURoMoWEcX_oNsXXS8N0nTZCnFFwwqOuO23KYJU2knQ9KF_ntfszrwLQ4fh7FLhCWClte4RF1ZrdURKxCMLeuqgmNWAAgsja3tKTvL-QMA0UhbsE0TU_IjzUPc8fXWx-QnHmLiT3GX57-Z0hdv4rQf_Sd_m6PbUp4Hx19SdD5nn3kMnPirp5G_UxqoG_05Owk0Zn9x4IJt7m7XzUO5er5_bG5WpUMl5tIo6AjAGSWl6J3VBru-J02d6LVSJkhJSuvOCsQ6gK18ZQ30AQRVxhstF-zq3-tSzDn50O7TMP0cbhHa3x4ttoce8hu_IlJW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Correlation Theorem for Nonstationary Complex Stochastic Processes of a Real Variable</title><source>AIP Digital Archive</source><creator>Kouskoulas, Vasilios</creator><creatorcontrib>Kouskoulas, Vasilios</creatorcontrib><description>The object of this paper is to derive a general correlation theorem for a class of complex stochastic processes of a real argument. By means of this theorem, the correlation functions and the time-power spectral densities, which are defined by averaging the realizations of the processes and their running spectra, respectively, are related to each other by a pair of one-dimensional integral transformations. This theorem is reduced to corresponding theorems for other classes of stochastic processes which form subsets of the set of processes under consideration. The properties of the correlation functions and time-power spectral densities along with questions concerning conditions for the existence and usefulness of these concepts in scientific and engineering applications occupy a good portion of this paper.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1659664</identifier><language>eng</language><ispartof>Journal of applied physics, 1971-09, Vol.42 (10), p.3659-3666</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c142t-840ba00c84332dc9681bdda6ab2d6448f33a466b92117f095e5980df02a58e863</citedby><cites>FETCH-LOGICAL-c142t-840ba00c84332dc9681bdda6ab2d6448f33a466b92117f095e5980df02a58e863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Kouskoulas, Vasilios</creatorcontrib><title>Correlation Theorem for Nonstationary Complex Stochastic Processes of a Real Variable</title><title>Journal of applied physics</title><description>The object of this paper is to derive a general correlation theorem for a class of complex stochastic processes of a real argument. By means of this theorem, the correlation functions and the time-power spectral densities, which are defined by averaging the realizations of the processes and their running spectra, respectively, are related to each other by a pair of one-dimensional integral transformations. This theorem is reduced to corresponding theorems for other classes of stochastic processes which form subsets of the set of processes under consideration. The properties of the correlation functions and time-power spectral densities along with questions concerning conditions for the existence and usefulness of these concepts in scientific and engineering applications occupy a good portion of this paper.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1971</creationdate><recordtype>article</recordtype><recordid>eNotkEtLxDAURoMoWEcX_oNsXXS8N0nTZCnFFwwqOuO23KYJU2knQ9KF_ntfszrwLQ4fh7FLhCWClte4RF1ZrdURKxCMLeuqgmNWAAgsja3tKTvL-QMA0UhbsE0TU_IjzUPc8fXWx-QnHmLiT3GX57-Z0hdv4rQf_Sd_m6PbUp4Hx19SdD5nn3kMnPirp5G_UxqoG_05Owk0Zn9x4IJt7m7XzUO5er5_bG5WpUMl5tIo6AjAGSWl6J3VBru-J02d6LVSJkhJSuvOCsQ6gK18ZQ30AQRVxhstF-zq3-tSzDn50O7TMP0cbhHa3x4ttoce8hu_IlJW</recordid><startdate>19710901</startdate><enddate>19710901</enddate><creator>Kouskoulas, Vasilios</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19710901</creationdate><title>Correlation Theorem for Nonstationary Complex Stochastic Processes of a Real Variable</title><author>Kouskoulas, Vasilios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c142t-840ba00c84332dc9681bdda6ab2d6448f33a466b92117f095e5980df02a58e863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1971</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouskoulas, Vasilios</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouskoulas, Vasilios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation Theorem for Nonstationary Complex Stochastic Processes of a Real Variable</atitle><jtitle>Journal of applied physics</jtitle><date>1971-09-01</date><risdate>1971</risdate><volume>42</volume><issue>10</issue><spage>3659</spage><epage>3666</epage><pages>3659-3666</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>The object of this paper is to derive a general correlation theorem for a class of complex stochastic processes of a real argument. By means of this theorem, the correlation functions and the time-power spectral densities, which are defined by averaging the realizations of the processes and their running spectra, respectively, are related to each other by a pair of one-dimensional integral transformations. This theorem is reduced to corresponding theorems for other classes of stochastic processes which form subsets of the set of processes under consideration. The properties of the correlation functions and time-power spectral densities along with questions concerning conditions for the existence and usefulness of these concepts in scientific and engineering applications occupy a good portion of this paper.</abstract><doi>10.1063/1.1659664</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1971-09, Vol.42 (10), p.3659-3666
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_1659664
source AIP Digital Archive
title Correlation Theorem for Nonstationary Complex Stochastic Processes of a Real Variable
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20Theorem%20for%20Nonstationary%20Complex%20Stochastic%20Processes%20of%20a%20Real%20Variable&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kouskoulas,%20Vasilios&rft.date=1971-09-01&rft.volume=42&rft.issue=10&rft.spage=3659&rft.epage=3666&rft.pages=3659-3666&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1659664&rft_dat=%3Ccrossref%3E10_1063_1_1659664%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true