The Green–Kubo formula and power spectrum of reversible Markov processes

As is known, the entropy production rate of a stationary Markov process vanishes if and only if the process is reversible. In this paper, we discuss the reversibility of a stationary Markov process from a functional analysis point of view. It is shown that the process is reversible if and only if it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2003-10, Vol.44 (10), p.4681-4689
Hauptverfasser: Jiang, Da-Quan, Zhang, Fu-Xi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4689
container_issue 10
container_start_page 4681
container_title Journal of mathematical physics
container_volume 44
creator Jiang, Da-Quan
Zhang, Fu-Xi
description As is known, the entropy production rate of a stationary Markov process vanishes if and only if the process is reversible. In this paper, we discuss the reversibility of a stationary Markov process from a functional analysis point of view. It is shown that the process is reversible if and only if it has a symmetric Markov semigroup, equivalently, a self-adjoint infinitesimal generator. Applying this fact, we prove that the Green–Kubo formula holds for reversible Markov processes. By demonstrating that the power spectrum of each reversible Markov process is Lorentz-typed, we show that it is impossible for stochastic resonance to occur in systems with zero entropy production.
doi_str_mv 10.1063/1.1610780
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1610780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-9ec4ccd9b9bf8b18ff839a901537c4e82e88f197a3ca73fa04c6bab6567514db3</originalsourceid><addsrcrecordid>eNp90L1OwzAUhmELgUQpDNyBV5BSfBIntkdUQfkpYilzZDvHItDW0XFaxMY9cIdcCaBWMCAxfcujb3gZOwYxAlEVZzCCCoTSYocNQGiTqarUu2wgRJ5nudR6nx2k9CQEgJZywG5mj8gnhLj8eHu_XbnIQ6TFam65XTa8iy9IPHXoe1oteAyccI2UWjdHfmfpOa55R9FjSpgO2V6w84RH2x2yh8uL2fgqm95Prsfn08znRvWZQS-9b4wzLmgHOgRdGGsElIXyEnWOWgcwyhbeqiJYIX3lrKvKSpUgG1cM2cnm11NMiTDUHbULS681iPo7Qg31NsKXPd3Y5Nve9m1c_uB1pF9Yd034D_99_gQVoGyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Green–Kubo formula and power spectrum of reversible Markov processes</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Jiang, Da-Quan ; Zhang, Fu-Xi</creator><creatorcontrib>Jiang, Da-Quan ; Zhang, Fu-Xi</creatorcontrib><description>As is known, the entropy production rate of a stationary Markov process vanishes if and only if the process is reversible. In this paper, we discuss the reversibility of a stationary Markov process from a functional analysis point of view. It is shown that the process is reversible if and only if it has a symmetric Markov semigroup, equivalently, a self-adjoint infinitesimal generator. Applying this fact, we prove that the Green–Kubo formula holds for reversible Markov processes. By demonstrating that the power spectrum of each reversible Markov process is Lorentz-typed, we show that it is impossible for stochastic resonance to occur in systems with zero entropy production.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1610780</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 2003-10, Vol.44 (10), p.4681-4689</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-9ec4ccd9b9bf8b18ff839a901537c4e82e88f197a3ca73fa04c6bab6567514db3</citedby><cites>FETCH-LOGICAL-c297t-9ec4ccd9b9bf8b18ff839a901537c4e82e88f197a3ca73fa04c6bab6567514db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1610780$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,1554,4498,27905,27906,76133,76139</link.rule.ids></links><search><creatorcontrib>Jiang, Da-Quan</creatorcontrib><creatorcontrib>Zhang, Fu-Xi</creatorcontrib><title>The Green–Kubo formula and power spectrum of reversible Markov processes</title><title>Journal of mathematical physics</title><description>As is known, the entropy production rate of a stationary Markov process vanishes if and only if the process is reversible. In this paper, we discuss the reversibility of a stationary Markov process from a functional analysis point of view. It is shown that the process is reversible if and only if it has a symmetric Markov semigroup, equivalently, a self-adjoint infinitesimal generator. Applying this fact, we prove that the Green–Kubo formula holds for reversible Markov processes. By demonstrating that the power spectrum of each reversible Markov process is Lorentz-typed, we show that it is impossible for stochastic resonance to occur in systems with zero entropy production.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp90L1OwzAUhmELgUQpDNyBV5BSfBIntkdUQfkpYilzZDvHItDW0XFaxMY9cIdcCaBWMCAxfcujb3gZOwYxAlEVZzCCCoTSYocNQGiTqarUu2wgRJ5nudR6nx2k9CQEgJZywG5mj8gnhLj8eHu_XbnIQ6TFam65XTa8iy9IPHXoe1oteAyccI2UWjdHfmfpOa55R9FjSpgO2V6w84RH2x2yh8uL2fgqm95Prsfn08znRvWZQS-9b4wzLmgHOgRdGGsElIXyEnWOWgcwyhbeqiJYIX3lrKvKSpUgG1cM2cnm11NMiTDUHbULS681iPo7Qg31NsKXPd3Y5Nve9m1c_uB1pF9Yd034D_99_gQVoGyo</recordid><startdate>200310</startdate><enddate>200310</enddate><creator>Jiang, Da-Quan</creator><creator>Zhang, Fu-Xi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200310</creationdate><title>The Green–Kubo formula and power spectrum of reversible Markov processes</title><author>Jiang, Da-Quan ; Zhang, Fu-Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-9ec4ccd9b9bf8b18ff839a901537c4e82e88f197a3ca73fa04c6bab6567514db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Da-Quan</creatorcontrib><creatorcontrib>Zhang, Fu-Xi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Da-Quan</au><au>Zhang, Fu-Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Green–Kubo formula and power spectrum of reversible Markov processes</atitle><jtitle>Journal of mathematical physics</jtitle><date>2003-10</date><risdate>2003</risdate><volume>44</volume><issue>10</issue><spage>4681</spage><epage>4689</epage><pages>4681-4689</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>As is known, the entropy production rate of a stationary Markov process vanishes if and only if the process is reversible. In this paper, we discuss the reversibility of a stationary Markov process from a functional analysis point of view. It is shown that the process is reversible if and only if it has a symmetric Markov semigroup, equivalently, a self-adjoint infinitesimal generator. Applying this fact, we prove that the Green–Kubo formula holds for reversible Markov processes. By demonstrating that the power spectrum of each reversible Markov process is Lorentz-typed, we show that it is impossible for stochastic resonance to occur in systems with zero entropy production.</abstract><doi>10.1063/1.1610780</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2003-10, Vol.44 (10), p.4681-4689
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_1610780
source AIP Journals Complete; AIP Digital Archive
title The Green–Kubo formula and power spectrum of reversible Markov processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Green%E2%80%93Kubo%20formula%20and%20power%20spectrum%20of%20reversible%20Markov%20processes&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Jiang,%20Da-Quan&rft.date=2003-10&rft.volume=44&rft.issue=10&rft.spage=4681&rft.epage=4689&rft.pages=4681-4689&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1610780&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true