Wave simulation in partially frozen porous media with fractal freezing conditions
A recent article [J. M. Carcione and G. Seriani, J. Comput. Phys. 170, 676 (2001)] proposes a modeling algorithm for wave simulation in a three-phase porous medium composed of sand grains, ice, and water. The differential equations hold for uniform water (ice) content. Here, we obtain the variable-p...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2003-12, Vol.94 (12), p.7839-7847 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7847 |
---|---|
container_issue | 12 |
container_start_page | 7839 |
container_title | Journal of applied physics |
container_volume | 94 |
creator | Carcione, José M. Santos, Juan E. Ravazzoli, Claudia L. Helle, Hans B. |
description | A recent article [J. M. Carcione and G. Seriani, J. Comput. Phys. 170, 676 (2001)] proposes a modeling algorithm for wave simulation in a three-phase porous medium composed of sand grains, ice, and water. The differential equations hold for uniform water (ice) content. Here, we obtain the variable-porosity differential equations by using the analogy with the two-phase case and the complementary energy theorem. The displacements of the rock and ice frames and the variation of fluid content are the generalized coordinates, and the stress components and fluid pressure are the generalized forces. We simulate wave propagation in a frozen porous medium with fractal variations of porosity and, therefore, realistic freezing conditions. |
doi_str_mv | 10.1063/1.1606861 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1606861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1606861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-360763cdec3ef1ccc02aa0454a89c56da14d0eaaf4391ca4d8fae56aaa537e223</originalsourceid><addsrcrecordid>eNotkEtLAzEURoMoOFYX_oNsXUy9dzLJJEspvqAgguJyuOShkXmUZKq0v94pdnXg--AsDmPXCEsEJW5xiQqUVnjCCgRtykZKOGUFQIWlNo05Zxc5fwMgamEK9vpBP57n2G87muI48DjwDaUpUtfteEjj3s_DmMZt5r13kfhvnL7mg-xE3Uzv93H45HYcXDwI8iU7C9Rlf3Xkgr0_3L-tnsr1y-Pz6m5d2qpqplIoaJSwzlvhA1proSKCWtakjZXKEdYOPFGohUFLtdOBvFREJEXjq0os2M2_16Yx5-RDu0mxp7RrEdpDixbbYwvxBxuIUyM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wave simulation in partially frozen porous media with fractal freezing conditions</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Carcione, José M. ; Santos, Juan E. ; Ravazzoli, Claudia L. ; Helle, Hans B.</creator><creatorcontrib>Carcione, José M. ; Santos, Juan E. ; Ravazzoli, Claudia L. ; Helle, Hans B.</creatorcontrib><description>A recent article [J. M. Carcione and G. Seriani, J. Comput. Phys. 170, 676 (2001)] proposes a modeling algorithm for wave simulation in a three-phase porous medium composed of sand grains, ice, and water. The differential equations hold for uniform water (ice) content. Here, we obtain the variable-porosity differential equations by using the analogy with the two-phase case and the complementary energy theorem. The displacements of the rock and ice frames and the variation of fluid content are the generalized coordinates, and the stress components and fluid pressure are the generalized forces. We simulate wave propagation in a frozen porous medium with fractal variations of porosity and, therefore, realistic freezing conditions.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1606861</identifier><language>eng</language><ispartof>Journal of applied physics, 2003-12, Vol.94 (12), p.7839-7847</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-360763cdec3ef1ccc02aa0454a89c56da14d0eaaf4391ca4d8fae56aaa537e223</citedby><cites>FETCH-LOGICAL-c227t-360763cdec3ef1ccc02aa0454a89c56da14d0eaaf4391ca4d8fae56aaa537e223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Carcione, José M.</creatorcontrib><creatorcontrib>Santos, Juan E.</creatorcontrib><creatorcontrib>Ravazzoli, Claudia L.</creatorcontrib><creatorcontrib>Helle, Hans B.</creatorcontrib><title>Wave simulation in partially frozen porous media with fractal freezing conditions</title><title>Journal of applied physics</title><description>A recent article [J. M. Carcione and G. Seriani, J. Comput. Phys. 170, 676 (2001)] proposes a modeling algorithm for wave simulation in a three-phase porous medium composed of sand grains, ice, and water. The differential equations hold for uniform water (ice) content. Here, we obtain the variable-porosity differential equations by using the analogy with the two-phase case and the complementary energy theorem. The displacements of the rock and ice frames and the variation of fluid content are the generalized coordinates, and the stress components and fluid pressure are the generalized forces. We simulate wave propagation in a frozen porous medium with fractal variations of porosity and, therefore, realistic freezing conditions.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEURoMoOFYX_oNsXUy9dzLJJEspvqAgguJyuOShkXmUZKq0v94pdnXg--AsDmPXCEsEJW5xiQqUVnjCCgRtykZKOGUFQIWlNo05Zxc5fwMgamEK9vpBP57n2G87muI48DjwDaUpUtfteEjj3s_DmMZt5r13kfhvnL7mg-xE3Uzv93H45HYcXDwI8iU7C9Rlf3Xkgr0_3L-tnsr1y-Pz6m5d2qpqplIoaJSwzlvhA1proSKCWtakjZXKEdYOPFGohUFLtdOBvFREJEXjq0os2M2_16Yx5-RDu0mxp7RrEdpDixbbYwvxBxuIUyM</recordid><startdate>20031215</startdate><enddate>20031215</enddate><creator>Carcione, José M.</creator><creator>Santos, Juan E.</creator><creator>Ravazzoli, Claudia L.</creator><creator>Helle, Hans B.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20031215</creationdate><title>Wave simulation in partially frozen porous media with fractal freezing conditions</title><author>Carcione, José M. ; Santos, Juan E. ; Ravazzoli, Claudia L. ; Helle, Hans B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-360763cdec3ef1ccc02aa0454a89c56da14d0eaaf4391ca4d8fae56aaa537e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carcione, José M.</creatorcontrib><creatorcontrib>Santos, Juan E.</creatorcontrib><creatorcontrib>Ravazzoli, Claudia L.</creatorcontrib><creatorcontrib>Helle, Hans B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carcione, José M.</au><au>Santos, Juan E.</au><au>Ravazzoli, Claudia L.</au><au>Helle, Hans B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave simulation in partially frozen porous media with fractal freezing conditions</atitle><jtitle>Journal of applied physics</jtitle><date>2003-12-15</date><risdate>2003</risdate><volume>94</volume><issue>12</issue><spage>7839</spage><epage>7847</epage><pages>7839-7847</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>A recent article [J. M. Carcione and G. Seriani, J. Comput. Phys. 170, 676 (2001)] proposes a modeling algorithm for wave simulation in a three-phase porous medium composed of sand grains, ice, and water. The differential equations hold for uniform water (ice) content. Here, we obtain the variable-porosity differential equations by using the analogy with the two-phase case and the complementary energy theorem. The displacements of the rock and ice frames and the variation of fluid content are the generalized coordinates, and the stress components and fluid pressure are the generalized forces. We simulate wave propagation in a frozen porous medium with fractal variations of porosity and, therefore, realistic freezing conditions.</abstract><doi>10.1063/1.1606861</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2003-12, Vol.94 (12), p.7839-7847 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1606861 |
source | AIP Journals Complete; AIP Digital Archive |
title | Wave simulation in partially frozen porous media with fractal freezing conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20simulation%20in%20partially%20frozen%20porous%20media%20with%20fractal%20freezing%20conditions&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Carcione,%20Jos%C3%A9%20M.&rft.date=2003-12-15&rft.volume=94&rft.issue=12&rft.spage=7839&rft.epage=7847&rft.pages=7839-7847&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1606861&rft_dat=%3Ccrossref%3E10_1063_1_1606861%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |