Wave simulation in partially frozen porous media with fractal freezing conditions

A recent article [J. M. Carcione and G. Seriani, J. Comput. Phys. 170, 676 (2001)] proposes a modeling algorithm for wave simulation in a three-phase porous medium composed of sand grains, ice, and water. The differential equations hold for uniform water (ice) content. Here, we obtain the variable-p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2003-12, Vol.94 (12), p.7839-7847
Hauptverfasser: Carcione, José M., Santos, Juan E., Ravazzoli, Claudia L., Helle, Hans B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7847
container_issue 12
container_start_page 7839
container_title Journal of applied physics
container_volume 94
creator Carcione, José M.
Santos, Juan E.
Ravazzoli, Claudia L.
Helle, Hans B.
description A recent article [J. M. Carcione and G. Seriani, J. Comput. Phys. 170, 676 (2001)] proposes a modeling algorithm for wave simulation in a three-phase porous medium composed of sand grains, ice, and water. The differential equations hold for uniform water (ice) content. Here, we obtain the variable-porosity differential equations by using the analogy with the two-phase case and the complementary energy theorem. The displacements of the rock and ice frames and the variation of fluid content are the generalized coordinates, and the stress components and fluid pressure are the generalized forces. We simulate wave propagation in a frozen porous medium with fractal variations of porosity and, therefore, realistic freezing conditions.
doi_str_mv 10.1063/1.1606861
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1606861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1606861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-360763cdec3ef1ccc02aa0454a89c56da14d0eaaf4391ca4d8fae56aaa537e223</originalsourceid><addsrcrecordid>eNotkEtLAzEURoMoOFYX_oNsXUy9dzLJJEspvqAgguJyuOShkXmUZKq0v94pdnXg--AsDmPXCEsEJW5xiQqUVnjCCgRtykZKOGUFQIWlNo05Zxc5fwMgamEK9vpBP57n2G87muI48DjwDaUpUtfteEjj3s_DmMZt5r13kfhvnL7mg-xE3Uzv93H45HYcXDwI8iU7C9Rlf3Xkgr0_3L-tnsr1y-Pz6m5d2qpqplIoaJSwzlvhA1proSKCWtakjZXKEdYOPFGohUFLtdOBvFREJEXjq0os2M2_16Yx5-RDu0mxp7RrEdpDixbbYwvxBxuIUyM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wave simulation in partially frozen porous media with fractal freezing conditions</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Carcione, José M. ; Santos, Juan E. ; Ravazzoli, Claudia L. ; Helle, Hans B.</creator><creatorcontrib>Carcione, José M. ; Santos, Juan E. ; Ravazzoli, Claudia L. ; Helle, Hans B.</creatorcontrib><description>A recent article [J. M. Carcione and G. Seriani, J. Comput. Phys. 170, 676 (2001)] proposes a modeling algorithm for wave simulation in a three-phase porous medium composed of sand grains, ice, and water. The differential equations hold for uniform water (ice) content. Here, we obtain the variable-porosity differential equations by using the analogy with the two-phase case and the complementary energy theorem. The displacements of the rock and ice frames and the variation of fluid content are the generalized coordinates, and the stress components and fluid pressure are the generalized forces. We simulate wave propagation in a frozen porous medium with fractal variations of porosity and, therefore, realistic freezing conditions.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1606861</identifier><language>eng</language><ispartof>Journal of applied physics, 2003-12, Vol.94 (12), p.7839-7847</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-360763cdec3ef1ccc02aa0454a89c56da14d0eaaf4391ca4d8fae56aaa537e223</citedby><cites>FETCH-LOGICAL-c227t-360763cdec3ef1ccc02aa0454a89c56da14d0eaaf4391ca4d8fae56aaa537e223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Carcione, José M.</creatorcontrib><creatorcontrib>Santos, Juan E.</creatorcontrib><creatorcontrib>Ravazzoli, Claudia L.</creatorcontrib><creatorcontrib>Helle, Hans B.</creatorcontrib><title>Wave simulation in partially frozen porous media with fractal freezing conditions</title><title>Journal of applied physics</title><description>A recent article [J. M. Carcione and G. Seriani, J. Comput. Phys. 170, 676 (2001)] proposes a modeling algorithm for wave simulation in a three-phase porous medium composed of sand grains, ice, and water. The differential equations hold for uniform water (ice) content. Here, we obtain the variable-porosity differential equations by using the analogy with the two-phase case and the complementary energy theorem. The displacements of the rock and ice frames and the variation of fluid content are the generalized coordinates, and the stress components and fluid pressure are the generalized forces. We simulate wave propagation in a frozen porous medium with fractal variations of porosity and, therefore, realistic freezing conditions.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEURoMoOFYX_oNsXUy9dzLJJEspvqAgguJyuOShkXmUZKq0v94pdnXg--AsDmPXCEsEJW5xiQqUVnjCCgRtykZKOGUFQIWlNo05Zxc5fwMgamEK9vpBP57n2G87muI48DjwDaUpUtfteEjj3s_DmMZt5r13kfhvnL7mg-xE3Uzv93H45HYcXDwI8iU7C9Rlf3Xkgr0_3L-tnsr1y-Pz6m5d2qpqplIoaJSwzlvhA1proSKCWtakjZXKEdYOPFGohUFLtdOBvFREJEXjq0os2M2_16Yx5-RDu0mxp7RrEdpDixbbYwvxBxuIUyM</recordid><startdate>20031215</startdate><enddate>20031215</enddate><creator>Carcione, José M.</creator><creator>Santos, Juan E.</creator><creator>Ravazzoli, Claudia L.</creator><creator>Helle, Hans B.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20031215</creationdate><title>Wave simulation in partially frozen porous media with fractal freezing conditions</title><author>Carcione, José M. ; Santos, Juan E. ; Ravazzoli, Claudia L. ; Helle, Hans B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-360763cdec3ef1ccc02aa0454a89c56da14d0eaaf4391ca4d8fae56aaa537e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carcione, José M.</creatorcontrib><creatorcontrib>Santos, Juan E.</creatorcontrib><creatorcontrib>Ravazzoli, Claudia L.</creatorcontrib><creatorcontrib>Helle, Hans B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carcione, José M.</au><au>Santos, Juan E.</au><au>Ravazzoli, Claudia L.</au><au>Helle, Hans B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave simulation in partially frozen porous media with fractal freezing conditions</atitle><jtitle>Journal of applied physics</jtitle><date>2003-12-15</date><risdate>2003</risdate><volume>94</volume><issue>12</issue><spage>7839</spage><epage>7847</epage><pages>7839-7847</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>A recent article [J. M. Carcione and G. Seriani, J. Comput. Phys. 170, 676 (2001)] proposes a modeling algorithm for wave simulation in a three-phase porous medium composed of sand grains, ice, and water. The differential equations hold for uniform water (ice) content. Here, we obtain the variable-porosity differential equations by using the analogy with the two-phase case and the complementary energy theorem. The displacements of the rock and ice frames and the variation of fluid content are the generalized coordinates, and the stress components and fluid pressure are the generalized forces. We simulate wave propagation in a frozen porous medium with fractal variations of porosity and, therefore, realistic freezing conditions.</abstract><doi>10.1063/1.1606861</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2003-12, Vol.94 (12), p.7839-7847
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_1606861
source AIP Journals Complete; AIP Digital Archive
title Wave simulation in partially frozen porous media with fractal freezing conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20simulation%20in%20partially%20frozen%20porous%20media%20with%20fractal%20freezing%20conditions&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Carcione,%20Jos%C3%A9%20M.&rft.date=2003-12-15&rft.volume=94&rft.issue=12&rft.spage=7839&rft.epage=7847&rft.pages=7839-7847&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1606861&rft_dat=%3Ccrossref%3E10_1063_1_1606861%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true