The role of the basis set: Assessing density functional theory

When developing and assessing density functional theory methods, a finite basis set is usually employed. In most cases, however, the issue of basis set dependency is neglected. Here, we assess several basis sets and functionals. In addition, the dependency of the semiempirical fits to a given basis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2003-08, Vol.119 (6), p.3005-3014
Hauptverfasser: Boese, A. Daniel, Martin, Jan M. L., Handy, Nicholas C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3014
container_issue 6
container_start_page 3005
container_title The Journal of chemical physics
container_volume 119
creator Boese, A. Daniel
Martin, Jan M. L.
Handy, Nicholas C.
description When developing and assessing density functional theory methods, a finite basis set is usually employed. In most cases, however, the issue of basis set dependency is neglected. Here, we assess several basis sets and functionals. In addition, the dependency of the semiempirical fits to a given basis set for a generalized gradient approximation and a hybrid functional is investigated. The resulting functionals are then tested for other basis sets, evaluating their errors and transferability.
doi_str_mv 10.1063/1.1589004
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1589004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1589004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-a5f90214007629644d60049c4a2c74c93c0b0a327e9d571b03423f3610f608fd3</originalsourceid><addsrcrecordid>eNotj7FOwzAURS0EEqEw8AdeGVLesx07ZkCqKgpIlVjKHDmODUEhRn5hyN-Tik73DldX5zB2i7BG0PIe11jVFkCdsQKhtqXRFs5ZASCwtBr0Jbsi-gIANEIV7PHwGXhOQ-Ap8mnpraOeOIXpgW-IAlE_fvAujNRPM4-_o5_6NLrhuE15vmYX0Q0Ubk65Yu-7p8P2pdy_Pb9uN_vSCy2m0lXRLgAKwGhhtVKdXhCtV054o7yVHlpwUphgu8pgC1IJGaVGiBrq2MkVu_v_9TkR5RCbn9x_uzw3CM1RvMHmJC7_AJwLSI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The role of the basis set: Assessing density functional theory</title><source>American Institute of Physics (AIP) Journals</source><source>AIP Digital Archive</source><creator>Boese, A. Daniel ; Martin, Jan M. L. ; Handy, Nicholas C.</creator><creatorcontrib>Boese, A. Daniel ; Martin, Jan M. L. ; Handy, Nicholas C.</creatorcontrib><description>When developing and assessing density functional theory methods, a finite basis set is usually employed. In most cases, however, the issue of basis set dependency is neglected. Here, we assess several basis sets and functionals. In addition, the dependency of the semiempirical fits to a given basis set for a generalized gradient approximation and a hybrid functional is investigated. The resulting functionals are then tested for other basis sets, evaluating their errors and transferability.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1589004</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2003-08, Vol.119 (6), p.3005-3014</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-a5f90214007629644d60049c4a2c74c93c0b0a327e9d571b03423f3610f608fd3</citedby><cites>FETCH-LOGICAL-c262t-a5f90214007629644d60049c4a2c74c93c0b0a327e9d571b03423f3610f608fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Boese, A. Daniel</creatorcontrib><creatorcontrib>Martin, Jan M. L.</creatorcontrib><creatorcontrib>Handy, Nicholas C.</creatorcontrib><title>The role of the basis set: Assessing density functional theory</title><title>The Journal of chemical physics</title><description>When developing and assessing density functional theory methods, a finite basis set is usually employed. In most cases, however, the issue of basis set dependency is neglected. Here, we assess several basis sets and functionals. In addition, the dependency of the semiempirical fits to a given basis set for a generalized gradient approximation and a hybrid functional is investigated. The resulting functionals are then tested for other basis sets, evaluating their errors and transferability.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotj7FOwzAURS0EEqEw8AdeGVLesx07ZkCqKgpIlVjKHDmODUEhRn5hyN-Tik73DldX5zB2i7BG0PIe11jVFkCdsQKhtqXRFs5ZASCwtBr0Jbsi-gIANEIV7PHwGXhOQ-Ap8mnpraOeOIXpgW-IAlE_fvAujNRPM4-_o5_6NLrhuE15vmYX0Q0Ubk65Yu-7p8P2pdy_Pb9uN_vSCy2m0lXRLgAKwGhhtVKdXhCtV054o7yVHlpwUphgu8pgC1IJGaVGiBrq2MkVu_v_9TkR5RCbn9x_uzw3CM1RvMHmJC7_AJwLSI0</recordid><startdate>20030808</startdate><enddate>20030808</enddate><creator>Boese, A. Daniel</creator><creator>Martin, Jan M. L.</creator><creator>Handy, Nicholas C.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030808</creationdate><title>The role of the basis set: Assessing density functional theory</title><author>Boese, A. Daniel ; Martin, Jan M. L. ; Handy, Nicholas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-a5f90214007629644d60049c4a2c74c93c0b0a327e9d571b03423f3610f608fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boese, A. Daniel</creatorcontrib><creatorcontrib>Martin, Jan M. L.</creatorcontrib><creatorcontrib>Handy, Nicholas C.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boese, A. Daniel</au><au>Martin, Jan M. L.</au><au>Handy, Nicholas C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of the basis set: Assessing density functional theory</atitle><jtitle>The Journal of chemical physics</jtitle><date>2003-08-08</date><risdate>2003</risdate><volume>119</volume><issue>6</issue><spage>3005</spage><epage>3014</epage><pages>3005-3014</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>When developing and assessing density functional theory methods, a finite basis set is usually employed. In most cases, however, the issue of basis set dependency is neglected. Here, we assess several basis sets and functionals. In addition, the dependency of the semiempirical fits to a given basis set for a generalized gradient approximation and a hybrid functional is investigated. The resulting functionals are then tested for other basis sets, evaluating their errors and transferability.</abstract><doi>10.1063/1.1589004</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2003-08, Vol.119 (6), p.3005-3014
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_1589004
source American Institute of Physics (AIP) Journals; AIP Digital Archive
title The role of the basis set: Assessing density functional theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20the%20basis%20set:%20Assessing%20density%20functional%20theory&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Boese,%20A.%20Daniel&rft.date=2003-08-08&rft.volume=119&rft.issue=6&rft.spage=3005&rft.epage=3014&rft.pages=3005-3014&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1589004&rft_dat=%3Ccrossref%3E10_1063_1_1589004%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true