The role of the basis set: Assessing density functional theory
When developing and assessing density functional theory methods, a finite basis set is usually employed. In most cases, however, the issue of basis set dependency is neglected. Here, we assess several basis sets and functionals. In addition, the dependency of the semiempirical fits to a given basis...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2003-08, Vol.119 (6), p.3005-3014 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3014 |
---|---|
container_issue | 6 |
container_start_page | 3005 |
container_title | The Journal of chemical physics |
container_volume | 119 |
creator | Boese, A. Daniel Martin, Jan M. L. Handy, Nicholas C. |
description | When developing and assessing density functional theory methods, a finite basis set is usually employed. In most cases, however, the issue of basis set dependency is neglected. Here, we assess several basis sets and functionals. In addition, the dependency of the semiempirical fits to a given basis set for a generalized gradient approximation and a hybrid functional is investigated. The resulting functionals are then tested for other basis sets, evaluating their errors and transferability. |
doi_str_mv | 10.1063/1.1589004 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1589004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1589004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-a5f90214007629644d60049c4a2c74c93c0b0a327e9d571b03423f3610f608fd3</originalsourceid><addsrcrecordid>eNotj7FOwzAURS0EEqEw8AdeGVLesx07ZkCqKgpIlVjKHDmODUEhRn5hyN-Tik73DldX5zB2i7BG0PIe11jVFkCdsQKhtqXRFs5ZASCwtBr0Jbsi-gIANEIV7PHwGXhOQ-Ap8mnpraOeOIXpgW-IAlE_fvAujNRPM4-_o5_6NLrhuE15vmYX0Q0Ubk65Yu-7p8P2pdy_Pb9uN_vSCy2m0lXRLgAKwGhhtVKdXhCtV054o7yVHlpwUphgu8pgC1IJGaVGiBrq2MkVu_v_9TkR5RCbn9x_uzw3CM1RvMHmJC7_AJwLSI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The role of the basis set: Assessing density functional theory</title><source>American Institute of Physics (AIP) Journals</source><source>AIP Digital Archive</source><creator>Boese, A. Daniel ; Martin, Jan M. L. ; Handy, Nicholas C.</creator><creatorcontrib>Boese, A. Daniel ; Martin, Jan M. L. ; Handy, Nicholas C.</creatorcontrib><description>When developing and assessing density functional theory methods, a finite basis set is usually employed. In most cases, however, the issue of basis set dependency is neglected. Here, we assess several basis sets and functionals. In addition, the dependency of the semiempirical fits to a given basis set for a generalized gradient approximation and a hybrid functional is investigated. The resulting functionals are then tested for other basis sets, evaluating their errors and transferability.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1589004</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2003-08, Vol.119 (6), p.3005-3014</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-a5f90214007629644d60049c4a2c74c93c0b0a327e9d571b03423f3610f608fd3</citedby><cites>FETCH-LOGICAL-c262t-a5f90214007629644d60049c4a2c74c93c0b0a327e9d571b03423f3610f608fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Boese, A. Daniel</creatorcontrib><creatorcontrib>Martin, Jan M. L.</creatorcontrib><creatorcontrib>Handy, Nicholas C.</creatorcontrib><title>The role of the basis set: Assessing density functional theory</title><title>The Journal of chemical physics</title><description>When developing and assessing density functional theory methods, a finite basis set is usually employed. In most cases, however, the issue of basis set dependency is neglected. Here, we assess several basis sets and functionals. In addition, the dependency of the semiempirical fits to a given basis set for a generalized gradient approximation and a hybrid functional is investigated. The resulting functionals are then tested for other basis sets, evaluating their errors and transferability.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotj7FOwzAURS0EEqEw8AdeGVLesx07ZkCqKgpIlVjKHDmODUEhRn5hyN-Tik73DldX5zB2i7BG0PIe11jVFkCdsQKhtqXRFs5ZASCwtBr0Jbsi-gIANEIV7PHwGXhOQ-Ap8mnpraOeOIXpgW-IAlE_fvAujNRPM4-_o5_6NLrhuE15vmYX0Q0Ubk65Yu-7p8P2pdy_Pb9uN_vSCy2m0lXRLgAKwGhhtVKdXhCtV054o7yVHlpwUphgu8pgC1IJGaVGiBrq2MkVu_v_9TkR5RCbn9x_uzw3CM1RvMHmJC7_AJwLSI0</recordid><startdate>20030808</startdate><enddate>20030808</enddate><creator>Boese, A. Daniel</creator><creator>Martin, Jan M. L.</creator><creator>Handy, Nicholas C.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030808</creationdate><title>The role of the basis set: Assessing density functional theory</title><author>Boese, A. Daniel ; Martin, Jan M. L. ; Handy, Nicholas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-a5f90214007629644d60049c4a2c74c93c0b0a327e9d571b03423f3610f608fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boese, A. Daniel</creatorcontrib><creatorcontrib>Martin, Jan M. L.</creatorcontrib><creatorcontrib>Handy, Nicholas C.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boese, A. Daniel</au><au>Martin, Jan M. L.</au><au>Handy, Nicholas C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of the basis set: Assessing density functional theory</atitle><jtitle>The Journal of chemical physics</jtitle><date>2003-08-08</date><risdate>2003</risdate><volume>119</volume><issue>6</issue><spage>3005</spage><epage>3014</epage><pages>3005-3014</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>When developing and assessing density functional theory methods, a finite basis set is usually employed. In most cases, however, the issue of basis set dependency is neglected. Here, we assess several basis sets and functionals. In addition, the dependency of the semiempirical fits to a given basis set for a generalized gradient approximation and a hybrid functional is investigated. The resulting functionals are then tested for other basis sets, evaluating their errors and transferability.</abstract><doi>10.1063/1.1589004</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2003-08, Vol.119 (6), p.3005-3014 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1589004 |
source | American Institute of Physics (AIP) Journals; AIP Digital Archive |
title | The role of the basis set: Assessing density functional theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20the%20basis%20set:%20Assessing%20density%20functional%20theory&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Boese,%20A.%20Daniel&rft.date=2003-08-08&rft.volume=119&rft.issue=6&rft.spage=3005&rft.epage=3014&rft.pages=3005-3014&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1589004&rft_dat=%3Ccrossref%3E10_1063_1_1589004%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |