Diffusion in dilute binary fluids confined in porous structures near the solvent critical point
We analyze diffusion in dilute binary fluids confined within porous media near the critical point of the solvent species. Both ordered and random confining structures are considered. At the solvent critical point solvent dynamics are quiescent, a consequence of the critical slowing-down phenomenon p...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2003-07, Vol.119 (2), p.1035-1044 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1044 |
---|---|
container_issue | 2 |
container_start_page | 1035 |
container_title | The Journal of chemical physics |
container_volume | 119 |
creator | De, S. Shapir, Y. Chimowitz, E. H. |
description | We analyze diffusion in dilute binary fluids confined within porous media near the critical point of the solvent species. Both ordered and random confining structures are considered. At the solvent critical point solvent dynamics are quiescent, a consequence of the critical slowing-down phenomenon predicted by theory. Solute diffusion, however, remains finite at these conditions, which we have characterized in terms of a system-invariant quantity we define as Ω. In specific situations Ω can also be related to scaling results in pure, homogeneous fluids, a result we illustrate with simulation data for a lattice–gas system. The implications of these theoretical concepts for both short-time dynamics and the practical situation involving diffusion through porous membranes are discussed and illustrated with computer simulation data. The simulations are carried out using a recently proposed relaxation-dynamics simulation algorithm that appears to be ideally suited for dynamical simulations in near-critical systems. |
doi_str_mv | 10.1063/1.1577532 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1577532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1577532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-b6b1f7d8521335f142a64843ab0845c63dba91c9fd4b0be6d97c36d881a1b6303</originalsourceid><addsrcrecordid>eNotkM1KxDAURoMoWEcXvkG2Ljrem7RJs5RRR2HAja5LfjFS0yFJBd_eGZzVtzl8cA4htwhrBMHvcY29lD1nZ6RBGFQrhYJz0gAwbJUAcUmuSvkCAJSsa8j4GENYSpwTjYm6OC3VUxOTzr80TEt0hdo5hZi8OwL7Oc9LoaXmxdYl-0KT15nWT0_LPP34VKnNsUarpwMbU70mF0FPxd-cdkU-np_eNy_t7m37unnYtZYxWVsjDAbphp4h533AjmnRDR3XBoaut4I7oxVaFVxnwHjhlLRcuGFAjUZw4Cty9_9r81xK9mHc5_h9sBgRxmOZEcdTGf4HCJJXBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Diffusion in dilute binary fluids confined in porous structures near the solvent critical point</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>De, S. ; Shapir, Y. ; Chimowitz, E. H.</creator><creatorcontrib>De, S. ; Shapir, Y. ; Chimowitz, E. H.</creatorcontrib><description>We analyze diffusion in dilute binary fluids confined within porous media near the critical point of the solvent species. Both ordered and random confining structures are considered. At the solvent critical point solvent dynamics are quiescent, a consequence of the critical slowing-down phenomenon predicted by theory. Solute diffusion, however, remains finite at these conditions, which we have characterized in terms of a system-invariant quantity we define as Ω. In specific situations Ω can also be related to scaling results in pure, homogeneous fluids, a result we illustrate with simulation data for a lattice–gas system. The implications of these theoretical concepts for both short-time dynamics and the practical situation involving diffusion through porous membranes are discussed and illustrated with computer simulation data. The simulations are carried out using a recently proposed relaxation-dynamics simulation algorithm that appears to be ideally suited for dynamical simulations in near-critical systems.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1577532</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2003-07, Vol.119 (2), p.1035-1044</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-b6b1f7d8521335f142a64843ab0845c63dba91c9fd4b0be6d97c36d881a1b6303</citedby><cites>FETCH-LOGICAL-c227t-b6b1f7d8521335f142a64843ab0845c63dba91c9fd4b0be6d97c36d881a1b6303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>De, S.</creatorcontrib><creatorcontrib>Shapir, Y.</creatorcontrib><creatorcontrib>Chimowitz, E. H.</creatorcontrib><title>Diffusion in dilute binary fluids confined in porous structures near the solvent critical point</title><title>The Journal of chemical physics</title><description>We analyze diffusion in dilute binary fluids confined within porous media near the critical point of the solvent species. Both ordered and random confining structures are considered. At the solvent critical point solvent dynamics are quiescent, a consequence of the critical slowing-down phenomenon predicted by theory. Solute diffusion, however, remains finite at these conditions, which we have characterized in terms of a system-invariant quantity we define as Ω. In specific situations Ω can also be related to scaling results in pure, homogeneous fluids, a result we illustrate with simulation data for a lattice–gas system. The implications of these theoretical concepts for both short-time dynamics and the practical situation involving diffusion through porous membranes are discussed and illustrated with computer simulation data. The simulations are carried out using a recently proposed relaxation-dynamics simulation algorithm that appears to be ideally suited for dynamical simulations in near-critical systems.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotkM1KxDAURoMoWEcXvkG2Ljrem7RJs5RRR2HAja5LfjFS0yFJBd_eGZzVtzl8cA4htwhrBMHvcY29lD1nZ6RBGFQrhYJz0gAwbJUAcUmuSvkCAJSsa8j4GENYSpwTjYm6OC3VUxOTzr80TEt0hdo5hZi8OwL7Oc9LoaXmxdYl-0KT15nWT0_LPP34VKnNsUarpwMbU70mF0FPxd-cdkU-np_eNy_t7m37unnYtZYxWVsjDAbphp4h533AjmnRDR3XBoaut4I7oxVaFVxnwHjhlLRcuGFAjUZw4Cty9_9r81xK9mHc5_h9sBgRxmOZEcdTGf4HCJJXBA</recordid><startdate>20030708</startdate><enddate>20030708</enddate><creator>De, S.</creator><creator>Shapir, Y.</creator><creator>Chimowitz, E. H.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030708</creationdate><title>Diffusion in dilute binary fluids confined in porous structures near the solvent critical point</title><author>De, S. ; Shapir, Y. ; Chimowitz, E. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-b6b1f7d8521335f142a64843ab0845c63dba91c9fd4b0be6d97c36d881a1b6303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De, S.</creatorcontrib><creatorcontrib>Shapir, Y.</creatorcontrib><creatorcontrib>Chimowitz, E. H.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De, S.</au><au>Shapir, Y.</au><au>Chimowitz, E. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion in dilute binary fluids confined in porous structures near the solvent critical point</atitle><jtitle>The Journal of chemical physics</jtitle><date>2003-07-08</date><risdate>2003</risdate><volume>119</volume><issue>2</issue><spage>1035</spage><epage>1044</epage><pages>1035-1044</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We analyze diffusion in dilute binary fluids confined within porous media near the critical point of the solvent species. Both ordered and random confining structures are considered. At the solvent critical point solvent dynamics are quiescent, a consequence of the critical slowing-down phenomenon predicted by theory. Solute diffusion, however, remains finite at these conditions, which we have characterized in terms of a system-invariant quantity we define as Ω. In specific situations Ω can also be related to scaling results in pure, homogeneous fluids, a result we illustrate with simulation data for a lattice–gas system. The implications of these theoretical concepts for both short-time dynamics and the practical situation involving diffusion through porous membranes are discussed and illustrated with computer simulation data. The simulations are carried out using a recently proposed relaxation-dynamics simulation algorithm that appears to be ideally suited for dynamical simulations in near-critical systems.</abstract><doi>10.1063/1.1577532</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2003-07, Vol.119 (2), p.1035-1044 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1577532 |
source | AIP Journals Complete; AIP Digital Archive |
title | Diffusion in dilute binary fluids confined in porous structures near the solvent critical point |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20in%20dilute%20binary%20fluids%20confined%20in%20porous%20structures%20near%20the%20solvent%20critical%20point&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=De,%20S.&rft.date=2003-07-08&rft.volume=119&rft.issue=2&rft.spage=1035&rft.epage=1044&rft.pages=1035-1044&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1577532&rft_dat=%3Ccrossref%3E10_1063_1_1577532%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |