Diffusion in dilute binary fluids confined in porous structures near the solvent critical point

We analyze diffusion in dilute binary fluids confined within porous media near the critical point of the solvent species. Both ordered and random confining structures are considered. At the solvent critical point solvent dynamics are quiescent, a consequence of the critical slowing-down phenomenon p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2003-07, Vol.119 (2), p.1035-1044
Hauptverfasser: De, S., Shapir, Y., Chimowitz, E. H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1044
container_issue 2
container_start_page 1035
container_title The Journal of chemical physics
container_volume 119
creator De, S.
Shapir, Y.
Chimowitz, E. H.
description We analyze diffusion in dilute binary fluids confined within porous media near the critical point of the solvent species. Both ordered and random confining structures are considered. At the solvent critical point solvent dynamics are quiescent, a consequence of the critical slowing-down phenomenon predicted by theory. Solute diffusion, however, remains finite at these conditions, which we have characterized in terms of a system-invariant quantity we define as Ω. In specific situations Ω can also be related to scaling results in pure, homogeneous fluids, a result we illustrate with simulation data for a lattice–gas system. The implications of these theoretical concepts for both short-time dynamics and the practical situation involving diffusion through porous membranes are discussed and illustrated with computer simulation data. The simulations are carried out using a recently proposed relaxation-dynamics simulation algorithm that appears to be ideally suited for dynamical simulations in near-critical systems.
doi_str_mv 10.1063/1.1577532
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1577532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1577532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-b6b1f7d8521335f142a64843ab0845c63dba91c9fd4b0be6d97c36d881a1b6303</originalsourceid><addsrcrecordid>eNotkM1KxDAURoMoWEcXvkG2Ljrem7RJs5RRR2HAja5LfjFS0yFJBd_eGZzVtzl8cA4htwhrBMHvcY29lD1nZ6RBGFQrhYJz0gAwbJUAcUmuSvkCAJSsa8j4GENYSpwTjYm6OC3VUxOTzr80TEt0hdo5hZi8OwL7Oc9LoaXmxdYl-0KT15nWT0_LPP34VKnNsUarpwMbU70mF0FPxd-cdkU-np_eNy_t7m37unnYtZYxWVsjDAbphp4h533AjmnRDR3XBoaut4I7oxVaFVxnwHjhlLRcuGFAjUZw4Cty9_9r81xK9mHc5_h9sBgRxmOZEcdTGf4HCJJXBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Diffusion in dilute binary fluids confined in porous structures near the solvent critical point</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>De, S. ; Shapir, Y. ; Chimowitz, E. H.</creator><creatorcontrib>De, S. ; Shapir, Y. ; Chimowitz, E. H.</creatorcontrib><description>We analyze diffusion in dilute binary fluids confined within porous media near the critical point of the solvent species. Both ordered and random confining structures are considered. At the solvent critical point solvent dynamics are quiescent, a consequence of the critical slowing-down phenomenon predicted by theory. Solute diffusion, however, remains finite at these conditions, which we have characterized in terms of a system-invariant quantity we define as Ω. In specific situations Ω can also be related to scaling results in pure, homogeneous fluids, a result we illustrate with simulation data for a lattice–gas system. The implications of these theoretical concepts for both short-time dynamics and the practical situation involving diffusion through porous membranes are discussed and illustrated with computer simulation data. The simulations are carried out using a recently proposed relaxation-dynamics simulation algorithm that appears to be ideally suited for dynamical simulations in near-critical systems.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1577532</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2003-07, Vol.119 (2), p.1035-1044</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-b6b1f7d8521335f142a64843ab0845c63dba91c9fd4b0be6d97c36d881a1b6303</citedby><cites>FETCH-LOGICAL-c227t-b6b1f7d8521335f142a64843ab0845c63dba91c9fd4b0be6d97c36d881a1b6303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>De, S.</creatorcontrib><creatorcontrib>Shapir, Y.</creatorcontrib><creatorcontrib>Chimowitz, E. H.</creatorcontrib><title>Diffusion in dilute binary fluids confined in porous structures near the solvent critical point</title><title>The Journal of chemical physics</title><description>We analyze diffusion in dilute binary fluids confined within porous media near the critical point of the solvent species. Both ordered and random confining structures are considered. At the solvent critical point solvent dynamics are quiescent, a consequence of the critical slowing-down phenomenon predicted by theory. Solute diffusion, however, remains finite at these conditions, which we have characterized in terms of a system-invariant quantity we define as Ω. In specific situations Ω can also be related to scaling results in pure, homogeneous fluids, a result we illustrate with simulation data for a lattice–gas system. The implications of these theoretical concepts for both short-time dynamics and the practical situation involving diffusion through porous membranes are discussed and illustrated with computer simulation data. The simulations are carried out using a recently proposed relaxation-dynamics simulation algorithm that appears to be ideally suited for dynamical simulations in near-critical systems.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotkM1KxDAURoMoWEcXvkG2Ljrem7RJs5RRR2HAja5LfjFS0yFJBd_eGZzVtzl8cA4htwhrBMHvcY29lD1nZ6RBGFQrhYJz0gAwbJUAcUmuSvkCAJSsa8j4GENYSpwTjYm6OC3VUxOTzr80TEt0hdo5hZi8OwL7Oc9LoaXmxdYl-0KT15nWT0_LPP34VKnNsUarpwMbU70mF0FPxd-cdkU-np_eNy_t7m37unnYtZYxWVsjDAbphp4h533AjmnRDR3XBoaut4I7oxVaFVxnwHjhlLRcuGFAjUZw4Cty9_9r81xK9mHc5_h9sBgRxmOZEcdTGf4HCJJXBA</recordid><startdate>20030708</startdate><enddate>20030708</enddate><creator>De, S.</creator><creator>Shapir, Y.</creator><creator>Chimowitz, E. H.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030708</creationdate><title>Diffusion in dilute binary fluids confined in porous structures near the solvent critical point</title><author>De, S. ; Shapir, Y. ; Chimowitz, E. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-b6b1f7d8521335f142a64843ab0845c63dba91c9fd4b0be6d97c36d881a1b6303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De, S.</creatorcontrib><creatorcontrib>Shapir, Y.</creatorcontrib><creatorcontrib>Chimowitz, E. H.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De, S.</au><au>Shapir, Y.</au><au>Chimowitz, E. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion in dilute binary fluids confined in porous structures near the solvent critical point</atitle><jtitle>The Journal of chemical physics</jtitle><date>2003-07-08</date><risdate>2003</risdate><volume>119</volume><issue>2</issue><spage>1035</spage><epage>1044</epage><pages>1035-1044</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We analyze diffusion in dilute binary fluids confined within porous media near the critical point of the solvent species. Both ordered and random confining structures are considered. At the solvent critical point solvent dynamics are quiescent, a consequence of the critical slowing-down phenomenon predicted by theory. Solute diffusion, however, remains finite at these conditions, which we have characterized in terms of a system-invariant quantity we define as Ω. In specific situations Ω can also be related to scaling results in pure, homogeneous fluids, a result we illustrate with simulation data for a lattice–gas system. The implications of these theoretical concepts for both short-time dynamics and the practical situation involving diffusion through porous membranes are discussed and illustrated with computer simulation data. The simulations are carried out using a recently proposed relaxation-dynamics simulation algorithm that appears to be ideally suited for dynamical simulations in near-critical systems.</abstract><doi>10.1063/1.1577532</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2003-07, Vol.119 (2), p.1035-1044
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_1577532
source AIP Journals Complete; AIP Digital Archive
title Diffusion in dilute binary fluids confined in porous structures near the solvent critical point
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20in%20dilute%20binary%20fluids%20confined%20in%20porous%20structures%20near%20the%20solvent%20critical%20point&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=De,%20S.&rft.date=2003-07-08&rft.volume=119&rft.issue=2&rft.spage=1035&rft.epage=1044&rft.pages=1035-1044&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1577532&rft_dat=%3Ccrossref%3E10_1063_1_1577532%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true