Efficient calculation of electron paramagnetic resonance g-tensors by multireference configuration interaction sum-over-state expansions, using the atomic mean-field spin–orbit method
Using the multireference configuration interaction method due to Grimme and Waletzke, combined with the atomic mean-field approximations for the efficient calculation of spin–orbit matrix elements, the g-tensors in second-order perturbation theory have been calculated for the main group radicals CO+...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2003-06, Vol.118 (21), p.9552-9562 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9562 |
---|---|
container_issue | 21 |
container_start_page | 9552 |
container_title | The Journal of chemical physics |
container_volume | 118 |
creator | Brownridge, Scott Grein, Friedrich Tatchen, Jörg Kleinschmidt, Martin Marian, Christel M. |
description | Using the multireference configuration interaction method due to Grimme and Waletzke, combined with the atomic mean-field approximations for the efficient calculation of spin–orbit matrix elements, the g-tensors in second-order perturbation theory have been calculated for the main group radicals CO+, CN, BO, BS, MgF, AlO, O2, HCO, H2O+, NO2, CO2−, NF2, NO22−, O3−, ClO2, and H2CO+, and for the transition metal compounds ZnH, ZnF, and TiF3, using explicit sum-over-state expansions for up to 20 excited states. In most cases, a valence triple-zeta basis set with polarization functions has been employed. It is shown that the addition of diffuse functions to this basis set does not improve the g-tensor results, and in several instances leads to slower convergence of the sum-over-state expansion. The calculated g-tensors are in good agreement with experimental values, and with our previous multireference configuration interaction results available for 9 of the 19 radicals. Our results are shown to be equivalent to, or better than, values obtained by other theoretical methods. Examples of radicals for which g-tensor calculations presented problems in the past are AlO and TiF3. For AlO, we obtain Δg⊥=−1530 ppm (parts per million), compared with an experimental value of −1900 ppm in Ne matrix. Using the SVP (valence double-zeta plus polarization) basis set, Δg⊥ of TiF3 is calculated to be −115.3 ppt (parts per thousand), compared with experimental values of −111.9 and −123.7 ppt. |
doi_str_mv | 10.1063/1.1569243 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1569243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1569243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d64d424ca33ca99d3fc7c15bd7d7f1c512d676bec12fd64a1950f5c269776ab33</originalsourceid><addsrcrecordid>eNotUEFu2zAQJIoUiOP20B_wWqBMSFGiymNhOEkBA7m0Z2G1WtosJNIgqSK55Q95Tb7Tl0Suc9rBzmAGM4x9UfJaSaNv1LVqjK1q_YGtlPxuRWusvGArKSslrJHmkl3l_EdKqdqqXrHXrXMePYXCEUacRyg-Bh4dp5GwpAUfIcEE-0DFI0-UY4CAxPeiUMgxZd4_8Wkei0_kKNGJwxic38_pbOZDoQT4H-d5EvEvJZELFOL0eISQFyJ_43P2Yc_LgTiUOC1ZE0EQztM48Hz04d_zS0y9L8u_HOLwiX10MGb6_H7X7Pft9tfmXuwe7n5ufuwEVlYXMZh6qKsaQWsEawftsEXV9EM7tE5ho6rBtKYnVJVbtKBsI12DlbFta6DXes2-nn0xxZyXjt0x-QnSU6dkd9q8U9375voN6Qp7aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient calculation of electron paramagnetic resonance g-tensors by multireference configuration interaction sum-over-state expansions, using the atomic mean-field spin–orbit method</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Brownridge, Scott ; Grein, Friedrich ; Tatchen, Jörg ; Kleinschmidt, Martin ; Marian, Christel M.</creator><creatorcontrib>Brownridge, Scott ; Grein, Friedrich ; Tatchen, Jörg ; Kleinschmidt, Martin ; Marian, Christel M.</creatorcontrib><description>Using the multireference configuration interaction method due to Grimme and Waletzke, combined with the atomic mean-field approximations for the efficient calculation of spin–orbit matrix elements, the g-tensors in second-order perturbation theory have been calculated for the main group radicals CO+, CN, BO, BS, MgF, AlO, O2, HCO, H2O+, NO2, CO2−, NF2, NO22−, O3−, ClO2, and H2CO+, and for the transition metal compounds ZnH, ZnF, and TiF3, using explicit sum-over-state expansions for up to 20 excited states. In most cases, a valence triple-zeta basis set with polarization functions has been employed. It is shown that the addition of diffuse functions to this basis set does not improve the g-tensor results, and in several instances leads to slower convergence of the sum-over-state expansion. The calculated g-tensors are in good agreement with experimental values, and with our previous multireference configuration interaction results available for 9 of the 19 radicals. Our results are shown to be equivalent to, or better than, values obtained by other theoretical methods. Examples of radicals for which g-tensor calculations presented problems in the past are AlO and TiF3. For AlO, we obtain Δg⊥=−1530 ppm (parts per million), compared with an experimental value of −1900 ppm in Ne matrix. Using the SVP (valence double-zeta plus polarization) basis set, Δg⊥ of TiF3 is calculated to be −115.3 ppt (parts per thousand), compared with experimental values of −111.9 and −123.7 ppt.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1569243</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2003-06, Vol.118 (21), p.9552-9562</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d64d424ca33ca99d3fc7c15bd7d7f1c512d676bec12fd64a1950f5c269776ab33</citedby><cites>FETCH-LOGICAL-c293t-d64d424ca33ca99d3fc7c15bd7d7f1c512d676bec12fd64a1950f5c269776ab33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Brownridge, Scott</creatorcontrib><creatorcontrib>Grein, Friedrich</creatorcontrib><creatorcontrib>Tatchen, Jörg</creatorcontrib><creatorcontrib>Kleinschmidt, Martin</creatorcontrib><creatorcontrib>Marian, Christel M.</creatorcontrib><title>Efficient calculation of electron paramagnetic resonance g-tensors by multireference configuration interaction sum-over-state expansions, using the atomic mean-field spin–orbit method</title><title>The Journal of chemical physics</title><description>Using the multireference configuration interaction method due to Grimme and Waletzke, combined with the atomic mean-field approximations for the efficient calculation of spin–orbit matrix elements, the g-tensors in second-order perturbation theory have been calculated for the main group radicals CO+, CN, BO, BS, MgF, AlO, O2, HCO, H2O+, NO2, CO2−, NF2, NO22−, O3−, ClO2, and H2CO+, and for the transition metal compounds ZnH, ZnF, and TiF3, using explicit sum-over-state expansions for up to 20 excited states. In most cases, a valence triple-zeta basis set with polarization functions has been employed. It is shown that the addition of diffuse functions to this basis set does not improve the g-tensor results, and in several instances leads to slower convergence of the sum-over-state expansion. The calculated g-tensors are in good agreement with experimental values, and with our previous multireference configuration interaction results available for 9 of the 19 radicals. Our results are shown to be equivalent to, or better than, values obtained by other theoretical methods. Examples of radicals for which g-tensor calculations presented problems in the past are AlO and TiF3. For AlO, we obtain Δg⊥=−1530 ppm (parts per million), compared with an experimental value of −1900 ppm in Ne matrix. Using the SVP (valence double-zeta plus polarization) basis set, Δg⊥ of TiF3 is calculated to be −115.3 ppt (parts per thousand), compared with experimental values of −111.9 and −123.7 ppt.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotUEFu2zAQJIoUiOP20B_wWqBMSFGiymNhOEkBA7m0Z2G1WtosJNIgqSK55Q95Tb7Tl0Suc9rBzmAGM4x9UfJaSaNv1LVqjK1q_YGtlPxuRWusvGArKSslrJHmkl3l_EdKqdqqXrHXrXMePYXCEUacRyg-Bh4dp5GwpAUfIcEE-0DFI0-UY4CAxPeiUMgxZd4_8Wkei0_kKNGJwxic38_pbOZDoQT4H-d5EvEvJZELFOL0eISQFyJ_43P2Yc_LgTiUOC1ZE0EQztM48Hz04d_zS0y9L8u_HOLwiX10MGb6_H7X7Pft9tfmXuwe7n5ufuwEVlYXMZh6qKsaQWsEawftsEXV9EM7tE5ho6rBtKYnVJVbtKBsI12DlbFta6DXes2-nn0xxZyXjt0x-QnSU6dkd9q8U9375voN6Qp7aQ</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Brownridge, Scott</creator><creator>Grein, Friedrich</creator><creator>Tatchen, Jörg</creator><creator>Kleinschmidt, Martin</creator><creator>Marian, Christel M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030601</creationdate><title>Efficient calculation of electron paramagnetic resonance g-tensors by multireference configuration interaction sum-over-state expansions, using the atomic mean-field spin–orbit method</title><author>Brownridge, Scott ; Grein, Friedrich ; Tatchen, Jörg ; Kleinschmidt, Martin ; Marian, Christel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d64d424ca33ca99d3fc7c15bd7d7f1c512d676bec12fd64a1950f5c269776ab33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brownridge, Scott</creatorcontrib><creatorcontrib>Grein, Friedrich</creatorcontrib><creatorcontrib>Tatchen, Jörg</creatorcontrib><creatorcontrib>Kleinschmidt, Martin</creatorcontrib><creatorcontrib>Marian, Christel M.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brownridge, Scott</au><au>Grein, Friedrich</au><au>Tatchen, Jörg</au><au>Kleinschmidt, Martin</au><au>Marian, Christel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient calculation of electron paramagnetic resonance g-tensors by multireference configuration interaction sum-over-state expansions, using the atomic mean-field spin–orbit method</atitle><jtitle>The Journal of chemical physics</jtitle><date>2003-06-01</date><risdate>2003</risdate><volume>118</volume><issue>21</issue><spage>9552</spage><epage>9562</epage><pages>9552-9562</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Using the multireference configuration interaction method due to Grimme and Waletzke, combined with the atomic mean-field approximations for the efficient calculation of spin–orbit matrix elements, the g-tensors in second-order perturbation theory have been calculated for the main group radicals CO+, CN, BO, BS, MgF, AlO, O2, HCO, H2O+, NO2, CO2−, NF2, NO22−, O3−, ClO2, and H2CO+, and for the transition metal compounds ZnH, ZnF, and TiF3, using explicit sum-over-state expansions for up to 20 excited states. In most cases, a valence triple-zeta basis set with polarization functions has been employed. It is shown that the addition of diffuse functions to this basis set does not improve the g-tensor results, and in several instances leads to slower convergence of the sum-over-state expansion. The calculated g-tensors are in good agreement with experimental values, and with our previous multireference configuration interaction results available for 9 of the 19 radicals. Our results are shown to be equivalent to, or better than, values obtained by other theoretical methods. Examples of radicals for which g-tensor calculations presented problems in the past are AlO and TiF3. For AlO, we obtain Δg⊥=−1530 ppm (parts per million), compared with an experimental value of −1900 ppm in Ne matrix. Using the SVP (valence double-zeta plus polarization) basis set, Δg⊥ of TiF3 is calculated to be −115.3 ppt (parts per thousand), compared with experimental values of −111.9 and −123.7 ppt.</abstract><doi>10.1063/1.1569243</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2003-06, Vol.118 (21), p.9552-9562 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1569243 |
source | AIP Journals Complete; AIP Digital Archive |
title | Efficient calculation of electron paramagnetic resonance g-tensors by multireference configuration interaction sum-over-state expansions, using the atomic mean-field spin–orbit method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20calculation%20of%20electron%20paramagnetic%20resonance%20g-tensors%20by%20multireference%20configuration%20interaction%20sum-over-state%20expansions,%20using%20the%20atomic%20mean-field%20spin%E2%80%93orbit%20method&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Brownridge,%20Scott&rft.date=2003-06-01&rft.volume=118&rft.issue=21&rft.spage=9552&rft.epage=9562&rft.pages=9552-9562&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1569243&rft_dat=%3Ccrossref%3E10_1063_1_1569243%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |