Efficient calculation of electron paramagnetic resonance g-tensors by multireference configuration interaction sum-over-state expansions, using the atomic mean-field spin–orbit method

Using the multireference configuration interaction method due to Grimme and Waletzke, combined with the atomic mean-field approximations for the efficient calculation of spin–orbit matrix elements, the g-tensors in second-order perturbation theory have been calculated for the main group radicals CO+...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2003-06, Vol.118 (21), p.9552-9562
Hauptverfasser: Brownridge, Scott, Grein, Friedrich, Tatchen, Jörg, Kleinschmidt, Martin, Marian, Christel M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9562
container_issue 21
container_start_page 9552
container_title The Journal of chemical physics
container_volume 118
creator Brownridge, Scott
Grein, Friedrich
Tatchen, Jörg
Kleinschmidt, Martin
Marian, Christel M.
description Using the multireference configuration interaction method due to Grimme and Waletzke, combined with the atomic mean-field approximations for the efficient calculation of spin–orbit matrix elements, the g-tensors in second-order perturbation theory have been calculated for the main group radicals CO+, CN, BO, BS, MgF, AlO, O2, HCO, H2O+, NO2, CO2−, NF2, NO22−, O3−, ClO2, and H2CO+, and for the transition metal compounds ZnH, ZnF, and TiF3, using explicit sum-over-state expansions for up to 20 excited states. In most cases, a valence triple-zeta basis set with polarization functions has been employed. It is shown that the addition of diffuse functions to this basis set does not improve the g-tensor results, and in several instances leads to slower convergence of the sum-over-state expansion. The calculated g-tensors are in good agreement with experimental values, and with our previous multireference configuration interaction results available for 9 of the 19 radicals. Our results are shown to be equivalent to, or better than, values obtained by other theoretical methods. Examples of radicals for which g-tensor calculations presented problems in the past are AlO and TiF3. For AlO, we obtain Δg⊥=−1530 ppm (parts per million), compared with an experimental value of −1900 ppm in Ne matrix. Using the SVP (valence double-zeta plus polarization) basis set, Δg⊥ of TiF3 is calculated to be −115.3 ppt (parts per thousand), compared with experimental values of −111.9 and −123.7 ppt.
doi_str_mv 10.1063/1.1569243
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1569243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1569243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d64d424ca33ca99d3fc7c15bd7d7f1c512d676bec12fd64a1950f5c269776ab33</originalsourceid><addsrcrecordid>eNotUEFu2zAQJIoUiOP20B_wWqBMSFGiymNhOEkBA7m0Z2G1WtosJNIgqSK55Q95Tb7Tl0Suc9rBzmAGM4x9UfJaSaNv1LVqjK1q_YGtlPxuRWusvGArKSslrJHmkl3l_EdKqdqqXrHXrXMePYXCEUacRyg-Bh4dp5GwpAUfIcEE-0DFI0-UY4CAxPeiUMgxZd4_8Wkei0_kKNGJwxic38_pbOZDoQT4H-d5EvEvJZELFOL0eISQFyJ_43P2Yc_LgTiUOC1ZE0EQztM48Hz04d_zS0y9L8u_HOLwiX10MGb6_H7X7Pft9tfmXuwe7n5ufuwEVlYXMZh6qKsaQWsEawftsEXV9EM7tE5ho6rBtKYnVJVbtKBsI12DlbFta6DXes2-nn0xxZyXjt0x-QnSU6dkd9q8U9375voN6Qp7aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient calculation of electron paramagnetic resonance g-tensors by multireference configuration interaction sum-over-state expansions, using the atomic mean-field spin–orbit method</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Brownridge, Scott ; Grein, Friedrich ; Tatchen, Jörg ; Kleinschmidt, Martin ; Marian, Christel M.</creator><creatorcontrib>Brownridge, Scott ; Grein, Friedrich ; Tatchen, Jörg ; Kleinschmidt, Martin ; Marian, Christel M.</creatorcontrib><description>Using the multireference configuration interaction method due to Grimme and Waletzke, combined with the atomic mean-field approximations for the efficient calculation of spin–orbit matrix elements, the g-tensors in second-order perturbation theory have been calculated for the main group radicals CO+, CN, BO, BS, MgF, AlO, O2, HCO, H2O+, NO2, CO2−, NF2, NO22−, O3−, ClO2, and H2CO+, and for the transition metal compounds ZnH, ZnF, and TiF3, using explicit sum-over-state expansions for up to 20 excited states. In most cases, a valence triple-zeta basis set with polarization functions has been employed. It is shown that the addition of diffuse functions to this basis set does not improve the g-tensor results, and in several instances leads to slower convergence of the sum-over-state expansion. The calculated g-tensors are in good agreement with experimental values, and with our previous multireference configuration interaction results available for 9 of the 19 radicals. Our results are shown to be equivalent to, or better than, values obtained by other theoretical methods. Examples of radicals for which g-tensor calculations presented problems in the past are AlO and TiF3. For AlO, we obtain Δg⊥=−1530 ppm (parts per million), compared with an experimental value of −1900 ppm in Ne matrix. Using the SVP (valence double-zeta plus polarization) basis set, Δg⊥ of TiF3 is calculated to be −115.3 ppt (parts per thousand), compared with experimental values of −111.9 and −123.7 ppt.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1569243</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2003-06, Vol.118 (21), p.9552-9562</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d64d424ca33ca99d3fc7c15bd7d7f1c512d676bec12fd64a1950f5c269776ab33</citedby><cites>FETCH-LOGICAL-c293t-d64d424ca33ca99d3fc7c15bd7d7f1c512d676bec12fd64a1950f5c269776ab33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Brownridge, Scott</creatorcontrib><creatorcontrib>Grein, Friedrich</creatorcontrib><creatorcontrib>Tatchen, Jörg</creatorcontrib><creatorcontrib>Kleinschmidt, Martin</creatorcontrib><creatorcontrib>Marian, Christel M.</creatorcontrib><title>Efficient calculation of electron paramagnetic resonance g-tensors by multireference configuration interaction sum-over-state expansions, using the atomic mean-field spin–orbit method</title><title>The Journal of chemical physics</title><description>Using the multireference configuration interaction method due to Grimme and Waletzke, combined with the atomic mean-field approximations for the efficient calculation of spin–orbit matrix elements, the g-tensors in second-order perturbation theory have been calculated for the main group radicals CO+, CN, BO, BS, MgF, AlO, O2, HCO, H2O+, NO2, CO2−, NF2, NO22−, O3−, ClO2, and H2CO+, and for the transition metal compounds ZnH, ZnF, and TiF3, using explicit sum-over-state expansions for up to 20 excited states. In most cases, a valence triple-zeta basis set with polarization functions has been employed. It is shown that the addition of diffuse functions to this basis set does not improve the g-tensor results, and in several instances leads to slower convergence of the sum-over-state expansion. The calculated g-tensors are in good agreement with experimental values, and with our previous multireference configuration interaction results available for 9 of the 19 radicals. Our results are shown to be equivalent to, or better than, values obtained by other theoretical methods. Examples of radicals for which g-tensor calculations presented problems in the past are AlO and TiF3. For AlO, we obtain Δg⊥=−1530 ppm (parts per million), compared with an experimental value of −1900 ppm in Ne matrix. Using the SVP (valence double-zeta plus polarization) basis set, Δg⊥ of TiF3 is calculated to be −115.3 ppt (parts per thousand), compared with experimental values of −111.9 and −123.7 ppt.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotUEFu2zAQJIoUiOP20B_wWqBMSFGiymNhOEkBA7m0Z2G1WtosJNIgqSK55Q95Tb7Tl0Suc9rBzmAGM4x9UfJaSaNv1LVqjK1q_YGtlPxuRWusvGArKSslrJHmkl3l_EdKqdqqXrHXrXMePYXCEUacRyg-Bh4dp5GwpAUfIcEE-0DFI0-UY4CAxPeiUMgxZd4_8Wkei0_kKNGJwxic38_pbOZDoQT4H-d5EvEvJZELFOL0eISQFyJ_43P2Yc_LgTiUOC1ZE0EQztM48Hz04d_zS0y9L8u_HOLwiX10MGb6_H7X7Pft9tfmXuwe7n5ufuwEVlYXMZh6qKsaQWsEawftsEXV9EM7tE5ho6rBtKYnVJVbtKBsI12DlbFta6DXes2-nn0xxZyXjt0x-QnSU6dkd9q8U9375voN6Qp7aQ</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Brownridge, Scott</creator><creator>Grein, Friedrich</creator><creator>Tatchen, Jörg</creator><creator>Kleinschmidt, Martin</creator><creator>Marian, Christel M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030601</creationdate><title>Efficient calculation of electron paramagnetic resonance g-tensors by multireference configuration interaction sum-over-state expansions, using the atomic mean-field spin–orbit method</title><author>Brownridge, Scott ; Grein, Friedrich ; Tatchen, Jörg ; Kleinschmidt, Martin ; Marian, Christel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d64d424ca33ca99d3fc7c15bd7d7f1c512d676bec12fd64a1950f5c269776ab33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brownridge, Scott</creatorcontrib><creatorcontrib>Grein, Friedrich</creatorcontrib><creatorcontrib>Tatchen, Jörg</creatorcontrib><creatorcontrib>Kleinschmidt, Martin</creatorcontrib><creatorcontrib>Marian, Christel M.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brownridge, Scott</au><au>Grein, Friedrich</au><au>Tatchen, Jörg</au><au>Kleinschmidt, Martin</au><au>Marian, Christel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient calculation of electron paramagnetic resonance g-tensors by multireference configuration interaction sum-over-state expansions, using the atomic mean-field spin–orbit method</atitle><jtitle>The Journal of chemical physics</jtitle><date>2003-06-01</date><risdate>2003</risdate><volume>118</volume><issue>21</issue><spage>9552</spage><epage>9562</epage><pages>9552-9562</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Using the multireference configuration interaction method due to Grimme and Waletzke, combined with the atomic mean-field approximations for the efficient calculation of spin–orbit matrix elements, the g-tensors in second-order perturbation theory have been calculated for the main group radicals CO+, CN, BO, BS, MgF, AlO, O2, HCO, H2O+, NO2, CO2−, NF2, NO22−, O3−, ClO2, and H2CO+, and for the transition metal compounds ZnH, ZnF, and TiF3, using explicit sum-over-state expansions for up to 20 excited states. In most cases, a valence triple-zeta basis set with polarization functions has been employed. It is shown that the addition of diffuse functions to this basis set does not improve the g-tensor results, and in several instances leads to slower convergence of the sum-over-state expansion. The calculated g-tensors are in good agreement with experimental values, and with our previous multireference configuration interaction results available for 9 of the 19 radicals. Our results are shown to be equivalent to, or better than, values obtained by other theoretical methods. Examples of radicals for which g-tensor calculations presented problems in the past are AlO and TiF3. For AlO, we obtain Δg⊥=−1530 ppm (parts per million), compared with an experimental value of −1900 ppm in Ne matrix. Using the SVP (valence double-zeta plus polarization) basis set, Δg⊥ of TiF3 is calculated to be −115.3 ppt (parts per thousand), compared with experimental values of −111.9 and −123.7 ppt.</abstract><doi>10.1063/1.1569243</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2003-06, Vol.118 (21), p.9552-9562
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_1569243
source AIP Journals Complete; AIP Digital Archive
title Efficient calculation of electron paramagnetic resonance g-tensors by multireference configuration interaction sum-over-state expansions, using the atomic mean-field spin–orbit method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20calculation%20of%20electron%20paramagnetic%20resonance%20g-tensors%20by%20multireference%20configuration%20interaction%20sum-over-state%20expansions,%20using%20the%20atomic%20mean-field%20spin%E2%80%93orbit%20method&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Brownridge,%20Scott&rft.date=2003-06-01&rft.volume=118&rft.issue=21&rft.spage=9552&rft.epage=9562&rft.pages=9552-9562&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1569243&rft_dat=%3Ccrossref%3E10_1063_1_1569243%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true