Comparative experimental study of ionic polymer–metal composites with different backbone ionomers and in various cation forms

An ionic polymer–metal composite (IPMC) consisting of a thin perfluorinated ionomer (usually, Nafion or Flemion) strip, platinum, and/or gold plated on both faces and neutralized by a certain amount of appropriate cations undergoes large bending motion when, in a hydrated state, a small electric fie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2003-05, Vol.93 (9), p.5255-5267
Hauptverfasser: Nemat-Nasser, Sia, Wu, Yongxian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An ionic polymer–metal composite (IPMC) consisting of a thin perfluorinated ionomer (usually, Nafion or Flemion) strip, platinum, and/or gold plated on both faces and neutralized by a certain amount of appropriate cations undergoes large bending motion when, in a hydrated state, a small electric field is applied across its thickness. When the same membrane is suddenly bent, a small voltage of the order of millivolts is produced across its surfaces. Hence IPMCs can serve as soft bending actuators and sensors. This coupled electrical–chemical–mechanical response of IPMCs depends on the structure of the backbone ionic polymer, the morphology and conductivity of the metal electrodes, the nature of the cations, and the level of hydration (or other solvent uptake). We have carried out extensive experimental studies on both Nafion- and Flemion-based IPMCs in various cation forms, seeking to understand the fundamental properties of these composites, to explore the mechanism of their actuation, and finally, to optimize their performance for various potential applications. The results of some of these tests on both Nafion- and Flemion-based IPMCs with alkali-metal or alkyl-ammonium cations are reported here. Compared with Nafion-based IPMCs, Flemion-based IPMCs with fine dendritic gold electrodes have higher ion-exchange capacity, better surface conductivity, higher hydration capacity, and higher longitudinal stiffness. They also display greater bending actuation under the same applied voltage. In addition, they do not display a reverse relaxation under a sustained dc voltage, which is typical of Nafion-based IPMCs in alkali-metal form. Flemion IPMCs thus are promising composites for application as bending actuators.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1563300