Cell multipole method for molecular simulations in bulk and confined systems

One of the bottlenecks in molecular simulations is to treat large systems involving electrostatic interactions. Computational time in conventional molecular simulation methods scales with O(N2), where N is the number of atoms. With the emergence of new simulations methodologies, such as the cell mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2003-03, Vol.118 (12), p.5347-5355
Hauptverfasser: Zheng, Jie, Balasundaram, Ramkumar, Gehrke, Stevin H., Heffelfinger, Grant S., Goddard, William A., Jiang, Shaoyi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5355
container_issue 12
container_start_page 5347
container_title The Journal of chemical physics
container_volume 118
creator Zheng, Jie
Balasundaram, Ramkumar
Gehrke, Stevin H.
Heffelfinger, Grant S.
Goddard, William A.
Jiang, Shaoyi
description One of the bottlenecks in molecular simulations is to treat large systems involving electrostatic interactions. Computational time in conventional molecular simulation methods scales with O(N2), where N is the number of atoms. With the emergence of new simulations methodologies, such as the cell multipole method (CMM), and massively parallel supercomputers, simulations of 10-million atoms or more have been performed. In this work, the optimal hierarchical cell level and the algorithm for Taylor expansion were recommended for fast and efficient molecular dynamics simulations of three-dimensional (3D) systems. CMM was then extended to treat quasi-two-dimensional (2D) systems, which is very important for condensed matter physics problems. In addition, CMM was applied to grand canonical ensemble Monte Carlo simulations for both 3D and 2D systems. Under the optimal conditions, our results show that computational time is approximately linear with N for large systems, average error in total potential energy is about 0.05% for 3D and 0.32% for 2D systems, and the RMS force error is 0.27% for 3D and 0.43% for 2D systems when compared with the Ewald summation.
doi_str_mv 10.1063/1.1553979
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1553979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1553979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-dfa4b47ee30da01b11c9463201cded7f63446d6a4ba38896188a4727707c46e03</originalsourceid><addsrcrecordid>eNotkM1KxDAURoMoWEcXvkG2Ljrem2SSZimDOkLBja5Lmh-Mps3QtIt5eyvO6uODw1kcQu4RtgiSP-IWdzuulb4gFUKjayU1XJIKgGGtJchrclPKNwCgYqIi7d6nRIclzfGYk6eDn7-yoyFPdFi_XZKZaIkrYOaYx0LjSPsl_VAzOmrzGOLoHS2nMvuh3JKrYFLxd-fdkM-X54_9oW7fX9_2T21tmWRz7YIRvVDec3AGsEe0WkjOAK3zTgXJhZBOrpDhTaMlNo0RiikFygrpgW_Iw7_XTrmUyYfuOMXBTKcOofvL0GF3zsB_AanZT4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cell multipole method for molecular simulations in bulk and confined systems</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Zheng, Jie ; Balasundaram, Ramkumar ; Gehrke, Stevin H. ; Heffelfinger, Grant S. ; Goddard, William A. ; Jiang, Shaoyi</creator><creatorcontrib>Zheng, Jie ; Balasundaram, Ramkumar ; Gehrke, Stevin H. ; Heffelfinger, Grant S. ; Goddard, William A. ; Jiang, Shaoyi</creatorcontrib><description>One of the bottlenecks in molecular simulations is to treat large systems involving electrostatic interactions. Computational time in conventional molecular simulation methods scales with O(N2), where N is the number of atoms. With the emergence of new simulations methodologies, such as the cell multipole method (CMM), and massively parallel supercomputers, simulations of 10-million atoms or more have been performed. In this work, the optimal hierarchical cell level and the algorithm for Taylor expansion were recommended for fast and efficient molecular dynamics simulations of three-dimensional (3D) systems. CMM was then extended to treat quasi-two-dimensional (2D) systems, which is very important for condensed matter physics problems. In addition, CMM was applied to grand canonical ensemble Monte Carlo simulations for both 3D and 2D systems. Under the optimal conditions, our results show that computational time is approximately linear with N for large systems, average error in total potential energy is about 0.05% for 3D and 0.32% for 2D systems, and the RMS force error is 0.27% for 3D and 0.43% for 2D systems when compared with the Ewald summation.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1553979</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2003-03, Vol.118 (12), p.5347-5355</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-dfa4b47ee30da01b11c9463201cded7f63446d6a4ba38896188a4727707c46e03</citedby><cites>FETCH-LOGICAL-c262t-dfa4b47ee30da01b11c9463201cded7f63446d6a4ba38896188a4727707c46e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zheng, Jie</creatorcontrib><creatorcontrib>Balasundaram, Ramkumar</creatorcontrib><creatorcontrib>Gehrke, Stevin H.</creatorcontrib><creatorcontrib>Heffelfinger, Grant S.</creatorcontrib><creatorcontrib>Goddard, William A.</creatorcontrib><creatorcontrib>Jiang, Shaoyi</creatorcontrib><title>Cell multipole method for molecular simulations in bulk and confined systems</title><title>The Journal of chemical physics</title><description>One of the bottlenecks in molecular simulations is to treat large systems involving electrostatic interactions. Computational time in conventional molecular simulation methods scales with O(N2), where N is the number of atoms. With the emergence of new simulations methodologies, such as the cell multipole method (CMM), and massively parallel supercomputers, simulations of 10-million atoms or more have been performed. In this work, the optimal hierarchical cell level and the algorithm for Taylor expansion were recommended for fast and efficient molecular dynamics simulations of three-dimensional (3D) systems. CMM was then extended to treat quasi-two-dimensional (2D) systems, which is very important for condensed matter physics problems. In addition, CMM was applied to grand canonical ensemble Monte Carlo simulations for both 3D and 2D systems. Under the optimal conditions, our results show that computational time is approximately linear with N for large systems, average error in total potential energy is about 0.05% for 3D and 0.32% for 2D systems, and the RMS force error is 0.27% for 3D and 0.43% for 2D systems when compared with the Ewald summation.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotkM1KxDAURoMoWEcXvkG2Ljrem2SSZimDOkLBja5Lmh-Mps3QtIt5eyvO6uODw1kcQu4RtgiSP-IWdzuulb4gFUKjayU1XJIKgGGtJchrclPKNwCgYqIi7d6nRIclzfGYk6eDn7-yoyFPdFi_XZKZaIkrYOaYx0LjSPsl_VAzOmrzGOLoHS2nMvuh3JKrYFLxd-fdkM-X54_9oW7fX9_2T21tmWRz7YIRvVDec3AGsEe0WkjOAK3zTgXJhZBOrpDhTaMlNo0RiikFygrpgW_Iw7_XTrmUyYfuOMXBTKcOofvL0GF3zsB_AanZT4k</recordid><startdate>20030322</startdate><enddate>20030322</enddate><creator>Zheng, Jie</creator><creator>Balasundaram, Ramkumar</creator><creator>Gehrke, Stevin H.</creator><creator>Heffelfinger, Grant S.</creator><creator>Goddard, William A.</creator><creator>Jiang, Shaoyi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030322</creationdate><title>Cell multipole method for molecular simulations in bulk and confined systems</title><author>Zheng, Jie ; Balasundaram, Ramkumar ; Gehrke, Stevin H. ; Heffelfinger, Grant S. ; Goddard, William A. ; Jiang, Shaoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-dfa4b47ee30da01b11c9463201cded7f63446d6a4ba38896188a4727707c46e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Jie</creatorcontrib><creatorcontrib>Balasundaram, Ramkumar</creatorcontrib><creatorcontrib>Gehrke, Stevin H.</creatorcontrib><creatorcontrib>Heffelfinger, Grant S.</creatorcontrib><creatorcontrib>Goddard, William A.</creatorcontrib><creatorcontrib>Jiang, Shaoyi</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Jie</au><au>Balasundaram, Ramkumar</au><au>Gehrke, Stevin H.</au><au>Heffelfinger, Grant S.</au><au>Goddard, William A.</au><au>Jiang, Shaoyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell multipole method for molecular simulations in bulk and confined systems</atitle><jtitle>The Journal of chemical physics</jtitle><date>2003-03-22</date><risdate>2003</risdate><volume>118</volume><issue>12</issue><spage>5347</spage><epage>5355</epage><pages>5347-5355</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>One of the bottlenecks in molecular simulations is to treat large systems involving electrostatic interactions. Computational time in conventional molecular simulation methods scales with O(N2), where N is the number of atoms. With the emergence of new simulations methodologies, such as the cell multipole method (CMM), and massively parallel supercomputers, simulations of 10-million atoms or more have been performed. In this work, the optimal hierarchical cell level and the algorithm for Taylor expansion were recommended for fast and efficient molecular dynamics simulations of three-dimensional (3D) systems. CMM was then extended to treat quasi-two-dimensional (2D) systems, which is very important for condensed matter physics problems. In addition, CMM was applied to grand canonical ensemble Monte Carlo simulations for both 3D and 2D systems. Under the optimal conditions, our results show that computational time is approximately linear with N for large systems, average error in total potential energy is about 0.05% for 3D and 0.32% for 2D systems, and the RMS force error is 0.27% for 3D and 0.43% for 2D systems when compared with the Ewald summation.</abstract><doi>10.1063/1.1553979</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2003-03, Vol.118 (12), p.5347-5355
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_1553979
source AIP Journals Complete; AIP Digital Archive
title Cell multipole method for molecular simulations in bulk and confined systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20multipole%20method%20for%20molecular%20simulations%20in%20bulk%20and%20confined%20systems&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Zheng,%20Jie&rft.date=2003-03-22&rft.volume=118&rft.issue=12&rft.spage=5347&rft.epage=5355&rft.pages=5347-5355&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1553979&rft_dat=%3Ccrossref%3E10_1063_1_1553979%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true