Analytical integral equation theory for a restricted primitive model of polyelectrolytes and counterions within the mean spherical approximation. II. Radial distribution functions

We have solved a polymerizing version of the mean spherical approximation for polyelectrolytes. The polyelectrolytes are modeled as tangentially-bonded hard-sphere segments interacting via the Coulombic potential in a continuous medium with dielectric constant. Analytical solutions for thermodynamic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2003-03, Vol.118 (9), p.4321-4330
Hauptverfasser: von Solms, N., Chiew, Y. C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4330
container_issue 9
container_start_page 4321
container_title The Journal of chemical physics
container_volume 118
creator von Solms, N.
Chiew, Y. C.
description We have solved a polymerizing version of the mean spherical approximation for polyelectrolytes. The polyelectrolytes are modeled as tangentially-bonded hard-sphere segments interacting via the Coulombic potential in a continuous medium with dielectric constant. Analytical solutions for thermodynamic properties and radial distribution functions at contact, as well as numerical solutions using a multiple-variable version of the Perram algorithm for radial distribution functions at separations beyond the core, are obtained for some specific systems (negatively charged chains of various length and counterions). Comparisons were made with published experimental data for osmotic pressure and with computer simulations for radial distribution functions. Good agreement is found for the osmotic pressure at all ranges of density. Good agreement is found for the radial distribution functions at moderate to high density.
doi_str_mv 10.1063/1.1539842
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1539842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1539842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-7aa106e253744898e8055fbb10331191269ae6e334360aea07e1a79d8238fd143</originalsourceid><addsrcrecordid>eNotkEtLxEAQhAdRcF09-A_66iFxHnnNcVl8LAiC6Dn0Jh13JMnEmYm6v8s_aLLuqQsKvqouxq4FjwXP1K2IRap0kcgTthC80FGeaX7KFpxLEemMZ-fswvsPzrnIZbJgv6se230wFbZg-kDvbhL0OWIwtoewI-v20FgHCI58cKYKVMPgTGeC-SLobE0t2AYG2-6ppSq4SQTygH0NlR0npptQHr5N2JkDEjrCHvywm5w5F4fB2R_THTJj2GxieMHaTE5t5sjteCjTjH01C3_JzhpsPV0d75K93d-9rh-jp-eHzXr1FFVS5iHKEadJSKYqT5JCF1TwNG22W8GVEkILmWmkjJRKVMaRkOckMNd1IVXR1CJRS3bzz62c9d5RU85_o9uXgpfz2qUoj2urP2uvdoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytical integral equation theory for a restricted primitive model of polyelectrolytes and counterions within the mean spherical approximation. II. Radial distribution functions</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>von Solms, N. ; Chiew, Y. C.</creator><creatorcontrib>von Solms, N. ; Chiew, Y. C.</creatorcontrib><description>We have solved a polymerizing version of the mean spherical approximation for polyelectrolytes. The polyelectrolytes are modeled as tangentially-bonded hard-sphere segments interacting via the Coulombic potential in a continuous medium with dielectric constant. Analytical solutions for thermodynamic properties and radial distribution functions at contact, as well as numerical solutions using a multiple-variable version of the Perram algorithm for radial distribution functions at separations beyond the core, are obtained for some specific systems (negatively charged chains of various length and counterions). Comparisons were made with published experimental data for osmotic pressure and with computer simulations for radial distribution functions. Good agreement is found for the osmotic pressure at all ranges of density. Good agreement is found for the radial distribution functions at moderate to high density.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1539842</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2003-03, Vol.118 (9), p.4321-4330</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-7aa106e253744898e8055fbb10331191269ae6e334360aea07e1a79d8238fd143</citedby><cites>FETCH-LOGICAL-c227t-7aa106e253744898e8055fbb10331191269ae6e334360aea07e1a79d8238fd143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>von Solms, N.</creatorcontrib><creatorcontrib>Chiew, Y. C.</creatorcontrib><title>Analytical integral equation theory for a restricted primitive model of polyelectrolytes and counterions within the mean spherical approximation. II. Radial distribution functions</title><title>The Journal of chemical physics</title><description>We have solved a polymerizing version of the mean spherical approximation for polyelectrolytes. The polyelectrolytes are modeled as tangentially-bonded hard-sphere segments interacting via the Coulombic potential in a continuous medium with dielectric constant. Analytical solutions for thermodynamic properties and radial distribution functions at contact, as well as numerical solutions using a multiple-variable version of the Perram algorithm for radial distribution functions at separations beyond the core, are obtained for some specific systems (negatively charged chains of various length and counterions). Comparisons were made with published experimental data for osmotic pressure and with computer simulations for radial distribution functions. Good agreement is found for the osmotic pressure at all ranges of density. Good agreement is found for the radial distribution functions at moderate to high density.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotkEtLxEAQhAdRcF09-A_66iFxHnnNcVl8LAiC6Dn0Jh13JMnEmYm6v8s_aLLuqQsKvqouxq4FjwXP1K2IRap0kcgTthC80FGeaX7KFpxLEemMZ-fswvsPzrnIZbJgv6se230wFbZg-kDvbhL0OWIwtoewI-v20FgHCI58cKYKVMPgTGeC-SLobE0t2AYG2-6ppSq4SQTygH0NlR0npptQHr5N2JkDEjrCHvywm5w5F4fB2R_THTJj2GxieMHaTE5t5sjteCjTjH01C3_JzhpsPV0d75K93d-9rh-jp-eHzXr1FFVS5iHKEadJSKYqT5JCF1TwNG22W8GVEkILmWmkjJRKVMaRkOckMNd1IVXR1CJRS3bzz62c9d5RU85_o9uXgpfz2qUoj2urP2uvdoU</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>von Solms, N.</creator><creator>Chiew, Y. C.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030301</creationdate><title>Analytical integral equation theory for a restricted primitive model of polyelectrolytes and counterions within the mean spherical approximation. II. Radial distribution functions</title><author>von Solms, N. ; Chiew, Y. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-7aa106e253744898e8055fbb10331191269ae6e334360aea07e1a79d8238fd143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Solms, N.</creatorcontrib><creatorcontrib>Chiew, Y. C.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Solms, N.</au><au>Chiew, Y. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical integral equation theory for a restricted primitive model of polyelectrolytes and counterions within the mean spherical approximation. II. Radial distribution functions</atitle><jtitle>The Journal of chemical physics</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>118</volume><issue>9</issue><spage>4321</spage><epage>4330</epage><pages>4321-4330</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We have solved a polymerizing version of the mean spherical approximation for polyelectrolytes. The polyelectrolytes are modeled as tangentially-bonded hard-sphere segments interacting via the Coulombic potential in a continuous medium with dielectric constant. Analytical solutions for thermodynamic properties and radial distribution functions at contact, as well as numerical solutions using a multiple-variable version of the Perram algorithm for radial distribution functions at separations beyond the core, are obtained for some specific systems (negatively charged chains of various length and counterions). Comparisons were made with published experimental data for osmotic pressure and with computer simulations for radial distribution functions. Good agreement is found for the osmotic pressure at all ranges of density. Good agreement is found for the radial distribution functions at moderate to high density.</abstract><doi>10.1063/1.1539842</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2003-03, Vol.118 (9), p.4321-4330
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_1539842
source AIP Journals Complete; AIP Digital Archive
title Analytical integral equation theory for a restricted primitive model of polyelectrolytes and counterions within the mean spherical approximation. II. Radial distribution functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20integral%20equation%20theory%20for%20a%20restricted%20primitive%20model%20of%20polyelectrolytes%20and%20counterions%20within%20the%20mean%20spherical%20approximation.%20II.%20Radial%20distribution%20functions&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=von%20Solms,%20N.&rft.date=2003-03-01&rft.volume=118&rft.issue=9&rft.spage=4321&rft.epage=4330&rft.pages=4321-4330&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1539842&rft_dat=%3Ccrossref%3E10_1063_1_1539842%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true