Interfacial properties deduced from nucleation experiments: A Cahn–Hilliard analysis

We apply a single-order-parameter Cahn–Hilliard theory to deduce properties of the fluid–crystal interface from nucleation experiments: The two Cahn–Hilliard parameters (the free energy scale and the coefficient of the square-gradient term) are chosen so that the experimentally determined interfacia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2002-10, Vol.117 (13), p.6157-6168
Hauptverfasser: Gránásy, László, Pusztai, Tamás, James, Peter F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6168
container_issue 13
container_start_page 6157
container_title The Journal of chemical physics
container_volume 117
creator Gránásy, László
Pusztai, Tamás
James, Peter F.
description We apply a single-order-parameter Cahn–Hilliard theory to deduce properties of the fluid–crystal interface from nucleation experiments: The two Cahn–Hilliard parameters (the free energy scale and the coefficient of the square-gradient term) are chosen so that the experimentally determined interfacial free energy of nuclei is recovered. The theory is then used to predict the thickness and free energy of the equilibrium planar interface, and other quantities such as the Tolman length and characteristic thickness, which describe the curvature dependence of the interfacial free energy. The accuracy of the method is demonstrated on systems (Lennard-Jones and ice-water) for which these properties are known. Experimental data available for five stoichiometric oxide glasses are then analyzed. The reduced interfacial free energy (Turnbull’s α) and the interface thickness, we obtained, cover the α=0.28–0.51 and the d=0.8–1.6 nm ranges. For oxide glasses we find that α scales with n−1/3, where n is the number of molecules per formula unit. In agreement with computer simulations, the Tolman length is strongly size dependent, while far weaker though still perceptible temperature dependence is observed for the characteristic interface thickness used in Gránásy’s phenomenological diffuse interface theory. In some cases bulk crystal properties prevail at the center of nuclei, while in other systems the nuclei are ramified, and the local properties significantly deviate from those of the macroscopic crystal. The accuracy of these results rests on a hypothesized temperature independence of the Cahn–Hilliard parameters, an assumption whose validity remains to be seen at large undercoolings.
doi_str_mv 10.1063/1.1502652
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1502652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1502652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-b2bc905b60966dbc1e2e105a7c0c137e9fdfdc6003656cbc54673f13078443483</originalsourceid><addsrcrecordid>eNotkLFOwzAURS0EEqEw8AdeGVLes2MnYasiaCtVYgHWyLGfhVGaVHYq0Y1_4A_5EorodJaro6vD2C3CHEHLe5yjAqGVOGMZQlXnpa7hnGUAAvNag75kVyl9AACWosjY23qYKHpjg-n5Lo47ilOgxB25vSXHfRy3fNjbnswUxoHT53ERtjRM6YEveGPeh5-v71Xo-2Ci42Yw_SGFdM0uvOkT3Zw4Y69Pjy_NKt88L9fNYpNbKaop70Rna1Cdhlpr11kkQQjKlBYsypJq77yzGkBqpW1nVaFL6VFCWRWFLCo5Y3f_XhvHlCL5dnd8Z-KhRWj_grTYnoLIX_9TVAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interfacial properties deduced from nucleation experiments: A Cahn–Hilliard analysis</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Gránásy, László ; Pusztai, Tamás ; James, Peter F.</creator><creatorcontrib>Gránásy, László ; Pusztai, Tamás ; James, Peter F.</creatorcontrib><description>We apply a single-order-parameter Cahn–Hilliard theory to deduce properties of the fluid–crystal interface from nucleation experiments: The two Cahn–Hilliard parameters (the free energy scale and the coefficient of the square-gradient term) are chosen so that the experimentally determined interfacial free energy of nuclei is recovered. The theory is then used to predict the thickness and free energy of the equilibrium planar interface, and other quantities such as the Tolman length and characteristic thickness, which describe the curvature dependence of the interfacial free energy. The accuracy of the method is demonstrated on systems (Lennard-Jones and ice-water) for which these properties are known. Experimental data available for five stoichiometric oxide glasses are then analyzed. The reduced interfacial free energy (Turnbull’s α) and the interface thickness, we obtained, cover the α=0.28–0.51 and the d=0.8–1.6 nm ranges. For oxide glasses we find that α scales with n−1/3, where n is the number of molecules per formula unit. In agreement with computer simulations, the Tolman length is strongly size dependent, while far weaker though still perceptible temperature dependence is observed for the characteristic interface thickness used in Gránásy’s phenomenological diffuse interface theory. In some cases bulk crystal properties prevail at the center of nuclei, while in other systems the nuclei are ramified, and the local properties significantly deviate from those of the macroscopic crystal. The accuracy of these results rests on a hypothesized temperature independence of the Cahn–Hilliard parameters, an assumption whose validity remains to be seen at large undercoolings.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1502652</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2002-10, Vol.117 (13), p.6157-6168</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-b2bc905b60966dbc1e2e105a7c0c137e9fdfdc6003656cbc54673f13078443483</citedby><cites>FETCH-LOGICAL-c328t-b2bc905b60966dbc1e2e105a7c0c137e9fdfdc6003656cbc54673f13078443483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gránásy, László</creatorcontrib><creatorcontrib>Pusztai, Tamás</creatorcontrib><creatorcontrib>James, Peter F.</creatorcontrib><title>Interfacial properties deduced from nucleation experiments: A Cahn–Hilliard analysis</title><title>The Journal of chemical physics</title><description>We apply a single-order-parameter Cahn–Hilliard theory to deduce properties of the fluid–crystal interface from nucleation experiments: The two Cahn–Hilliard parameters (the free energy scale and the coefficient of the square-gradient term) are chosen so that the experimentally determined interfacial free energy of nuclei is recovered. The theory is then used to predict the thickness and free energy of the equilibrium planar interface, and other quantities such as the Tolman length and characteristic thickness, which describe the curvature dependence of the interfacial free energy. The accuracy of the method is demonstrated on systems (Lennard-Jones and ice-water) for which these properties are known. Experimental data available for five stoichiometric oxide glasses are then analyzed. The reduced interfacial free energy (Turnbull’s α) and the interface thickness, we obtained, cover the α=0.28–0.51 and the d=0.8–1.6 nm ranges. For oxide glasses we find that α scales with n−1/3, where n is the number of molecules per formula unit. In agreement with computer simulations, the Tolman length is strongly size dependent, while far weaker though still perceptible temperature dependence is observed for the characteristic interface thickness used in Gránásy’s phenomenological diffuse interface theory. In some cases bulk crystal properties prevail at the center of nuclei, while in other systems the nuclei are ramified, and the local properties significantly deviate from those of the macroscopic crystal. The accuracy of these results rests on a hypothesized temperature independence of the Cahn–Hilliard parameters, an assumption whose validity remains to be seen at large undercoolings.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAURS0EEqEw8AdeGVLes2MnYasiaCtVYgHWyLGfhVGaVHYq0Y1_4A_5EorodJaro6vD2C3CHEHLe5yjAqGVOGMZQlXnpa7hnGUAAvNag75kVyl9AACWosjY23qYKHpjg-n5Lo47ilOgxB25vSXHfRy3fNjbnswUxoHT53ERtjRM6YEveGPeh5-v71Xo-2Ci42Yw_SGFdM0uvOkT3Zw4Y69Pjy_NKt88L9fNYpNbKaop70Rna1Cdhlpr11kkQQjKlBYsypJq77yzGkBqpW1nVaFL6VFCWRWFLCo5Y3f_XhvHlCL5dnd8Z-KhRWj_grTYnoLIX_9TVAc</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Gránásy, László</creator><creator>Pusztai, Tamás</creator><creator>James, Peter F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20021001</creationdate><title>Interfacial properties deduced from nucleation experiments: A Cahn–Hilliard analysis</title><author>Gránásy, László ; Pusztai, Tamás ; James, Peter F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-b2bc905b60966dbc1e2e105a7c0c137e9fdfdc6003656cbc54673f13078443483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gránásy, László</creatorcontrib><creatorcontrib>Pusztai, Tamás</creatorcontrib><creatorcontrib>James, Peter F.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gránásy, László</au><au>Pusztai, Tamás</au><au>James, Peter F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial properties deduced from nucleation experiments: A Cahn–Hilliard analysis</atitle><jtitle>The Journal of chemical physics</jtitle><date>2002-10-01</date><risdate>2002</risdate><volume>117</volume><issue>13</issue><spage>6157</spage><epage>6168</epage><pages>6157-6168</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We apply a single-order-parameter Cahn–Hilliard theory to deduce properties of the fluid–crystal interface from nucleation experiments: The two Cahn–Hilliard parameters (the free energy scale and the coefficient of the square-gradient term) are chosen so that the experimentally determined interfacial free energy of nuclei is recovered. The theory is then used to predict the thickness and free energy of the equilibrium planar interface, and other quantities such as the Tolman length and characteristic thickness, which describe the curvature dependence of the interfacial free energy. The accuracy of the method is demonstrated on systems (Lennard-Jones and ice-water) for which these properties are known. Experimental data available for five stoichiometric oxide glasses are then analyzed. The reduced interfacial free energy (Turnbull’s α) and the interface thickness, we obtained, cover the α=0.28–0.51 and the d=0.8–1.6 nm ranges. For oxide glasses we find that α scales with n−1/3, where n is the number of molecules per formula unit. In agreement with computer simulations, the Tolman length is strongly size dependent, while far weaker though still perceptible temperature dependence is observed for the characteristic interface thickness used in Gránásy’s phenomenological diffuse interface theory. In some cases bulk crystal properties prevail at the center of nuclei, while in other systems the nuclei are ramified, and the local properties significantly deviate from those of the macroscopic crystal. The accuracy of these results rests on a hypothesized temperature independence of the Cahn–Hilliard parameters, an assumption whose validity remains to be seen at large undercoolings.</abstract><doi>10.1063/1.1502652</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2002-10, Vol.117 (13), p.6157-6168
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_1502652
source AIP Journals Complete; AIP Digital Archive
title Interfacial properties deduced from nucleation experiments: A Cahn–Hilliard analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A23%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20properties%20deduced%20from%20nucleation%20experiments:%20A%20Cahn%E2%80%93Hilliard%20analysis&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Gr%C3%A1n%C3%A1sy,%20L%C3%A1szl%C3%B3&rft.date=2002-10-01&rft.volume=117&rft.issue=13&rft.spage=6157&rft.epage=6168&rft.pages=6157-6168&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1502652&rft_dat=%3Ccrossref%3E10_1063_1_1502652%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true